16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=2cosβ\\ y=2+2sinβ\end{array}\right.$(β為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C1和曲線C2的極坐標(biāo)方程;
(Ⅱ)已知射線l1:θ=α(0<α<$\frac{π}{2}$),將射線l1順時針旋轉(zhuǎn)$\frac{π}{6}$得到射線l2:θ=α-$\frac{π}{6}$,且射線l1與曲線C1交于O、P兩點,射線l2與曲線C2交于O、Q兩點,求|OP|•|OQ|的最大值.

分析 (1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),利用平方關(guān)系消去參數(shù)可得曲線C1的直角坐標(biāo)方程,利用互化公式可得曲線C1極坐標(biāo)方程.曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=2cosβ\\ y=2+2sinβ\end{array}\right.$(β為參數(shù)),消去參數(shù)可得:曲線C2的普通方程,利用互化公式可得C2極坐標(biāo)方程.
(2)設(shè)點P極點坐標(biāo)(ρ1,4cosα),即ρ1=4cosα.點Q極坐標(biāo)為$({ρ_2},4sin(α-\frac{π}{6}))$,即${ρ_2}=4sin(α-\frac{π}{6})$.代入|OP|•|OQ|,利用和差公式、三角函數(shù)的單調(diào)性與值域即可得出.

解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),
利用平方關(guān)系消去參數(shù)可得:曲線C1的普通方程為(x-2)2+y2=4,展開可得:x2+y2-4x=0,
利用互化公式可得:ρ2-4ρcosθ=0,
∴C1極坐標(biāo)方程為ρ=4cosθ.
曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=2cosβ\\ y=2+2sinβ\end{array}\right.$(β為參數(shù)),消去參數(shù)可得:
曲線C2的普通方程為x2+(y-2)2=4,
展開利用互化公式可得C2極坐標(biāo)方程為ρ=4sinθ.
(2)設(shè)點P極點坐標(biāo)(ρ1,4cosα),即ρ1=4cosα.
點Q極坐標(biāo)為$({ρ_2},4sin(α-\frac{π}{6}))$,即${ρ_2}=4sin(α-\frac{π}{6})$.
則$|OP|•|OQ|={ρ_1}{ρ_2}=4cosα•4sin(α-\frac{π}{6})$=$16cosα•(\frac{{\sqrt{3}}}{2}sinα-\frac{1}{2}cosα)$=$8sin(2α-\frac{π}{6})-4$.
∵$α∈(0,\frac{π}{2})$,
∴$2α-\frac{π}{6}∈(-\frac{π}{6},\frac{5π}{6})$,
當(dāng)$2α-\frac{π}{6}=\frac{π}{2}$,即$α=\frac{π}{3}$時,|OP|•|OQ|取最大值4.

點評 本題考查了參數(shù)方程化為普通方程、直線與曲線相交弦長公式、直角坐標(biāo)方程與極坐標(biāo)方程的互化,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{1-x}$,g(x)=sinx•f(sin2x)+$\frac{\sqrt{6}+\sqrt{2}}{4}$f(cos4x),x∈[-$\frac{π}{4}$,0]
(1)將函數(shù)g(x)化簡成Asin(ωx+φ)+B(A,B∈R,ω>0,φ∈(-π,π)的形式;
(2)求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知二面角α-l-β的平面角為θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,則θ=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在正三棱柱ABC-A1B1C1中,點D是棱AB的中點,BC=1,AA1=$\sqrt{3}$.
(1)求證:BC1∥平面A1DC;             
(2)求二面角D-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著智能手機(jī)的發(fā)展,微信越來越成為人們交流的一種方式.某機(jī)構(gòu)對使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)調(diào)查了 50 人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表.
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(I)由以上統(tǒng)計數(shù)據(jù)填寫下面 2×2 列聯(lián)表,并判斷是否有99%的把握認(rèn)為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人年齡低于45歲的人合計
贊成
不贊成
合計
(Ⅱ)若對年齡在[55,65),[65,75)的被調(diào)查人中隨機(jī)抽取兩人進(jìn)行追蹤調(diào)查,記選中的4人中贊成使用微信交流的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)當(dāng)$m=\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如表是某班(共30人)在一次考試中的數(shù)學(xué)和物理成績(單位:分)
 學(xué)號1 23 45 678 910 1112 1314 15
 數(shù)學(xué)成績 114 106 115 77 86 90 95 86 97 79 100 78 77 113 60
 物理成績 7249 5129 5749 62 2263 2942 2137 4621
 學(xué)號 16 1718192021222324252627282930
 數(shù)學(xué)成績 89 74829564875665436464856656 51
 物理成績 65 4533282928393445353534202939
將數(shù)學(xué)成績分為兩個層次:數(shù)學(xué)Ⅰ(大于等于80分)與數(shù)學(xué)Ⅱ(低于80分),物理也分為兩個層次:物理Ⅰ(大于等于59分)與物理Ⅱ(低于59分).
(1)根據(jù)這次考試的成績完成下面2×2列聯(lián)表,并運(yùn)用獨立性檢驗的知識進(jìn)行探究,可否有95%的把握認(rèn)為“數(shù)學(xué)成績與物理成績有關(guān)”?
 物理Ⅰ物理Ⅱ合計 
 數(shù)學(xué)Ⅰ 4  
 數(shù)學(xué)Ⅱ  15 
 合計   30
(2)從該班這次考試成績中任取兩名同學(xué)的成績,記ξ為數(shù)學(xué)與物理成績都達(dá)到Ⅰ層次的人數(shù),求ξ的分布列與數(shù)學(xué)期望.
可能用到的公式和參考數(shù)據(jù):K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
獨立性檢驗臨界值表(部分)
 P(K2≥k0 0.150 0.1000.050 0.0250.010
 k0 2.0722.706 3.8415.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人緊急轉(zhuǎn)移安置,5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離路率市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率直方圖:
(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款救援,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(3)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況圖,根據(jù)圖表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
 經(jīng)濟(jì)損失不超過4000元經(jīng)濟(jì)損失超過4000元合計
捐款超過500元a=30b 
捐款不超過500元cd=6 
合計   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“a>b”是“a2>b2”的充分不必要條件
B.命題“?x0∈R,x02+1<0”的否定是“?x0∈R,x02+1>0”
C.關(guān)于x的方程x2+(a+1)x+a-2=0的兩實根異號的充要條件是a<1
D.若f(x)是R上的偶函數(shù),則f(x+1)的圖象的對稱軸是x=-1

查看答案和解析>>

同步練習(xí)冊答案