(坐標(biāo)系與參數(shù)方程選做題)已知曲線C的參數(shù)方程為數(shù)學(xué)公式(t為參數(shù)),則在曲線C上橫坐標(biāo)為1的點P處的切線方程為________.

5x-y-1=0
分析:先消去參數(shù)求出其普通方程為y=f(x)=x3+2x+1,把1代入求出切點,再把1代入導(dǎo)函數(shù)求出切線的斜率,即可求出切線方程.
解答:解;由題得:y=f(x)=x3+2x+1,x=1,y=4.
∴f'(x)=3x2+2,
∴f'(1)=3+2=5=k.
橫坐標(biāo)為1的點P處的切線方程:y-4=5×(x-1)?5x-y-1=0.
故答案為:5x-y-1=0.
點評:本題主要考查利用導(dǎo)數(shù)研究曲線上某點切線方程,是對導(dǎo)數(shù)知識的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點為極點,x軸的正半軸為極軸,單位長度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為
2
,
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點A(1,
π
3
),B(3,
3
),O是極點,則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案