【題目】對(duì)于集合,,,,定義.集合中的元素個(gè)數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).

(1)已知集合,,寫出,的值;

(2)已知集合,其中,證明:有性質(zhì);

(3)已知集合,有性質(zhì),且的最小值.

【答案】(1) (2)證明過(guò)程見解析; (3) .

【解析】

(1)利用定義,通過(guò)計(jì)算可以求出,的值;

(2)可以知道集合中的元素組成首項(xiàng)為,公比為的等比數(shù)列,只要證明這個(gè)等比數(shù)列中的任意兩項(xiàng)(包括本身與本身)的和不在這個(gè)數(shù)列中即可.

(3) 根據(jù),有性質(zhì)了,可以知道集合中元素的性質(zhì),這樣可以求出的最小值.

(1) 根據(jù)定義可得:,.

所以

(2) 數(shù)列的通項(xiàng)公式為:.

若存在成立,則,因此有,即有.

等式的左邊是2的倍數(shù),右邊是3的倍數(shù),故等式不成立,因此等比數(shù)列中的任意兩項(xiàng)(包括本身與本身)的和不在這個(gè)數(shù)列中

所以中的元素的個(gè)數(shù)為:,即

,所以有性質(zhì);

(3) 集合具有性質(zhì),所以集合中的任意兩個(gè)元素的和都不在該集合中,也就是集合中的任意兩個(gè)元素的和都不相等,對(duì)于任意的,也就是任意兩個(gè)元素的差的絕對(duì)值不相等.

設(shè),所以

集合具有性質(zhì) ,

集合,有性質(zhì),

(當(dāng)且僅當(dāng)時(shí),取等號(hào)).

所以的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設(shè)A1C與AC1交于點(diǎn)D,B1C與BC1交于點(diǎn)E.

求證:(1)DE∥平面ABB1A1

(2)BC1⊥平面A1B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游戲公司對(duì)今年新開發(fā)的一些游戲進(jìn)行評(píng)測(cè),為了了解玩家對(duì)游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對(duì)他們的游戲體驗(yàn)感進(jìn)行測(cè)評(píng),并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中.

1)求這300名玩家測(cè)評(píng)分?jǐn)?shù)的平均數(shù);

2)由于該公司近年來(lái)生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請(qǐng)3位游戲?qū)<覍?duì)游戲進(jìn)行初測(cè),如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請(qǐng)2位專家二測(cè),二測(cè)時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對(duì)該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.

i)對(duì)該公司的任意一款游戲進(jìn)行檢測(cè),求該款游戲需要改進(jìn)的概率;

ii)每款游戲聘請(qǐng)專家測(cè)試的費(fèi)用均為300/人,今年所有游戲的研發(fā)總費(fèi)用為50萬(wàn)元,現(xiàn)對(duì)該公司今年研發(fā)的600款游戲都進(jìn)行檢測(cè),假設(shè)公司的預(yù)算為110萬(wàn)元,判斷這600款游戲所需的最高費(fèi)用是否超過(guò)預(yù)算,并通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面是邊長(zhǎng)為的菱形,是等邊三角形,的中點(diǎn),.

(1)求證:;

(2)若在線段上,且,能否在棱上找到一點(diǎn),使平面平面?若存在,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

(1)當(dāng)時(shí),求不等式的解集;

(2)已知恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò);

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號(hào)是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

年齡x

28

32

38

42

48

52

58

62

收縮壓單位

114

118

122

127

129

135

140

147

其中:,

請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程的值精確到

若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的對(duì)角線相交于點(diǎn),平面,四邊形為平行四邊形.

(1)求證:平面平面;

(2)若,,點(diǎn)在線段上,且,求平面與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案