【題目】已知橢圓,離心率是橢圓的左頂點(diǎn),是橢圓的左焦點(diǎn),,直線.

(1)求橢圓方程;

(2)直線過點(diǎn)與橢圓交于、兩點(diǎn),直線、分別與直線交于、兩點(diǎn),試問:以為直徑的圓是否過定點(diǎn),如果是,請求出定點(diǎn)坐標(biāo);如果不是,請說明理由.

【答案】(1);(2)以為直徑的圓能過兩定點(diǎn)、

【解析】

1)根據(jù)以及,解方程組求得的值,進(jìn)而求得橢圓方程.2)當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,兩點(diǎn)的坐標(biāo),根據(jù)直線的方程求得兩點(diǎn)的坐標(biāo),由此求得以為直徑的圓的方程.聯(lián)立直線的方程和橢圓的方程,利用韋達(dá)定理寫出兩點(diǎn)坐標(biāo)的關(guān)系,代入圓的方程進(jìn)行化簡,由此求得圓和軸交點(diǎn)的坐標(biāo).當(dāng)直線斜率不存在時(shí),求得點(diǎn)的坐標(biāo),求得為直徑的圓的方程,由此求得該圓也過直線斜率存在時(shí)的兩個(gè)點(diǎn).由此判斷出圓過定點(diǎn),并得到定點(diǎn)的坐標(biāo).

(1),得,所求橢圓方程:.

(2)當(dāng)直線斜率存在時(shí),設(shè)直線,,

直線,

,得,同理

為直徑的圓:,

整理得:

,得,

,

將②代入①整理得:,令,得.

當(dāng)直線斜率不存在時(shí),、、

為直徑的圓:也過點(diǎn)、兩點(diǎn),

綜上:以為直徑的圓能過兩定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬22米,要求通行車輛限高4.5米,隧道全長2.5千米,隧道的拱線近似地看成半個(gè)橢圓形狀.

1)若最大拱高h6米,則隧道設(shè)計(jì)的拱寬l是多少?

2)若最大拱高h不小于6米,則應(yīng)如何設(shè)計(jì)拱高h和拱寬l,才能使半個(gè)橢圓形隧道的土方工程量最最。浚ò雮(gè)橢圓的面積公式為,柱體體積為:底面積乘以高.本題結(jié)果精確到0.1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),曲線總在曲線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于直線m、n及平面,下列命題中正確的個(gè)數(shù)是(

①若,則 ②若,則

③若,則 ④若,則

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的面積為,且滿足,則邊的最小值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2019121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下表:

日期

121

122

123

124

125

溫差

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預(yù)報(bào)當(dāng)溫差為時(shí),種子發(fā)芽數(shù).

附:回歸直線方程:,其中;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌服裝店為了慶祝開業(yè)兩周年,特舉辦“你敢買,我就送”的回饋活動(dòng),規(guī)定店慶當(dāng)日進(jìn)店購買指定服裝的消費(fèi)者可參加游戲,贏取獎(jiǎng)金,游戲分為以下兩種:

游戲 1:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可獲得元獎(jiǎng)金;

游戲 2:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可得元獎(jiǎng)金;

無論參與哪種游戲,未成功均沒有收獲,每人有且僅有一次機(jī)會(huì),且每次游戲成功與否均互不影響,游戲結(jié)束后可到收銀臺(tái)領(lǐng)取獎(jiǎng)金。

(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎(jiǎng)金為,若,求的值;

(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問:他們選擇何種規(guī)則,累計(jì)得到獎(jiǎng)金的數(shù)學(xué)期望值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

)當(dāng)時(shí),

)求的單調(diào)區(qū)間;

)若在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案