已知函數(shù)在區(qū)間,上有極大值.
(1)求實(shí)常數(shù)m的值.
(2)求函數(shù)在區(qū)間,上的極小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量 (單位:千克)與銷售價(jià)格 (單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)若在處的切線與直線垂直,求的值;
(2)求在上的最小值;
(3)試探究能否存在區(qū)間,使得和在區(qū)間上具有相同的單調(diào)性?若能存在,說明區(qū)間的特點(diǎn),并指出和在區(qū)間上的單調(diào)性;若不能存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若直線與的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè),討論曲線與曲線公共點(diǎn)的個(gè)數(shù);
(3)設(shè),比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求的值;
(2)若函數(shù)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對稱,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線 平行于直線
4x-y-1=0,且點(diǎn) P0 在第三象限,
⑴求P0的坐標(biāo);
⑵若直線 , 且 l 也過切點(diǎn)P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).當(dāng)時(shí),函數(shù)取得極值.
(1)求函數(shù)的解析式;
(2)若方程有3個(gè)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(2)若函數(shù)在處取得極小值,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com