已知函數(shù)在區(qū)間,上有極大值
(1)求實(shí)常數(shù)m的值.
(2)求函數(shù)在區(qū)間,上的極小值.

(1) m=4;(2).

解析試題分析:(1)先利用導(dǎo)數(shù)四則運(yùn)算計(jì)算函數(shù)f(x)的導(dǎo)函數(shù)f′(x),再解不等式f′(x)=0,求出函數(shù)的極大值,即可求出m;
(2)根據(jù)(1)的結(jié)論,即可求出答案.
試題解析:解:. 令,可解得,x=2.
當(dāng)x變化時(shí),,變化情況為:
   5分;
(1)當(dāng)x=-2時(shí),取極大值,故.解得m=4.
(2)由,
當(dāng)時(shí),取極小值,為.    10分;
考點(diǎn):利用導(dǎo)數(shù)研究曲線的極值;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量 (單位:千克)與銷售價(jià)格 (單位:元/千克)滿足關(guān)系式,其中為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)若處的切線與直線垂直,求的值;
(2)求上的最小值;
(3)試探究能否存在區(qū)間,使得在區(qū)間上具有相同的單調(diào)性?若能存在,說明區(qū)間的特點(diǎn),并指出在區(qū)間上的單調(diào)性;若不能存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若直線的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè),討論曲線與曲線公共點(diǎn)的個(gè)數(shù);
(3)設(shè),比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處取得極值,求的值;
(2)若函數(shù)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對稱,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線  平行于直線
4x-y-1=0,且點(diǎn) P0 在第三象限,
⑴求P0的坐標(biāo);
⑵若直線  , 且 l 也過切點(diǎn)P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).當(dāng)時(shí),函數(shù)取得極值
(1)求函數(shù)的解析式;
(2)若方程有3個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(2)若函數(shù)處取得極小值,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案