(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)在上的圖像;
(3)證明:在上是減函數(shù).
(1)
;
(2)圖像
(3)函數(shù)在區(qū)間上是減函數(shù).
解析試題分析:(I)由于f(x)為奇函數(shù),所以f(-x)=-f(x),所以可知,因而所求式子的結(jié)果為0.
(II)根據(jù)奇函數(shù)的圖像關(guān)于原點對稱,直接可畫出在對稱區(qū)間[-b,-a]上的圖像.
(III)利用函數(shù)的單調(diào)性的定義及函數(shù)的奇偶性進行證明.
第一步:取值,第二步:作差變形,第三步根據(jù)差值符號得到結(jié)論.
(1)
……
(2)圖像……
(3)任取,且 ……
.
又函數(shù)在上是減函數(shù),所以 . ……
因為是奇函數(shù),所以,即,
故函數(shù)在區(qū)間上是減函數(shù). …….
考點:函數(shù)單調(diào)性定義,函數(shù)的奇偶性,函數(shù)的圖像.
點評:函數(shù)的奇偶性一要看定義域是否關(guān)于原點對稱,二要看f(-x)與f(x)是相等還是互為相反數(shù).奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱.利用函數(shù)的單調(diào)性定義證明分三個步驟:一取值,二作差變形,三判斷差值符號.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知是定義在[-1,1]上的奇函數(shù),當,且時有.
(1)判斷函數(shù)的單調(diào)性,并給予證明;
(2)若對所有恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)設(shè)為非負實數(shù),函數(shù).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=(>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當AE為何值時,綠地面積最大? (10分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,使不等式能成立,求實數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)定義域為,若對于任意的,都有,且時,有.
(1)求證: 為奇函數(shù);
(2)求證: 在上為單調(diào)遞增函數(shù);
(3)設(shè),若<,對所有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com