分析 先求出基本事件總數(shù),再求出恰有一件次品包含的基本事件個(gè)數(shù),由此能求出恰有一件次品的概率.
解答 解:5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
恰有一件次品包含的基本事件個(gè)數(shù)m=${C}_{3}^{1}{C}_{2}^{1}=6$,
∴恰有一件次品的概率p=$\frac{m}{n}$=$\frac{6}{10}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.
點(diǎn)評(píng) 本題考概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |r|≤1;r越大,相關(guān)程度越大;反之,相關(guān)程度越小 | |
B. | 線性回歸方程對(duì)應(yīng)的直線$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一個(gè)點(diǎn) | |
C. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
D. | 在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果差 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,1) | B. | (-2,-1) | C. | (-1,-2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{64}{27}$ | B. | $\frac{{64\sqrt{3}}}{9}$ | C. | $\frac{64}{9}$ | D. | $\frac{{64\sqrt{3}}}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)濟(jì)損失不超過(guò)4000元 | 經(jīng)濟(jì)損失超過(guò)4000元 | 合計(jì) | |
捐款超過(guò)500元 | 30 | 9 | 39 |
捐款不超過(guò)500元 | 5 | 6 | 11 |
合計(jì) | 35 | 15 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 350里 | B. | 1050里 | C. | $\frac{175}{32}$里 | D. | .$\frac{22575}{32}$里 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com