20.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(m,-4),若$\overrightarrow{a}∥\overrightarrow$,則實數(shù)m=-6.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$$∥\overrightarrow$,∴2m=-12,解得m=-6.
故答案為:-6.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖是一個幾何體的三視圖,則該幾何體的體積為( 。
A.2+πB.$3+\frac{π}{2}$C.3+πD.$4+\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}的前n項和為Sn,a1=a,當n≥2時,${S}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,an≠0,n∈N*.
(1)求a的值;
(2)設數(shù)列{cn}的前n項和為Tn,且cn=3n-1+a5,求使不等式4Tn>S10成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在四棱錐P-ABCD中,PC⊥底面ABCD,M,N分別是PD,PA的中點,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.
(1)求證:PA⊥平面CMN;
(2)求證:AM∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知動點C到點F(1,0)的距離比到直線x=-2的距離小1,動點C的軌跡為E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m(km<0)與曲線E相交于A,B兩個不同點,且$\overrightarrow{OA}•\overrightarrow{OB}=5$,證明:直線l經(jīng)過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,已知函數(shù)y=2kx(k>0)與函數(shù)y=x2的圖象所圍成的陰影部分的面積為$\frac{32}{3}$,則實數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|x2-8x+12≤0},B={x|x≥5},則A∩(∁RB)=( 。
A.[5,6]B.[2,5]C.[2,5)D.(-∞,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=$\sqrt{-x}+\sqrt{x(x+1)}$的定義域為{x|x≤-1或x=0}.

查看答案和解析>>

同步練習冊答案