14.在直三棱柱ABC-A1B1C1中,AB⊥AC,AA1=AC=2AB,M是CC1的中點(diǎn),N是棱AC上的點(diǎn),且$\overrightarrow{{A_1}N}⊥\overrightarrow{BM},|{\overrightarrow{{A_1}N}}|=2\sqrt{5}$,求三棱錐A1-ABN的體積.

分析 以A為原點(diǎn)建立坐標(biāo)系,設(shè)AB=a,AN=b,求出$\overrightarrow{{A}_{1}N}$和$\overrightarrow{BM}$的坐標(biāo),列出方程組求出a,b的值,代入棱錐的體積公式計算.

解答 解:以A為原點(diǎn),以AC,AB,AA1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系A(chǔ)-xyz,
設(shè)AB=a,AN=b,則A1(0,0,2a),B(0,a,0),N(b,0,0),M(2a,0,a),
∴$\overrightarrow{{A}_{1}N}$=(b,0,-2a),$\overrightarrow{BM}$=(2a,-a,a),
∵$\overrightarrow{{A_1}N}⊥\overrightarrow{BM},|{\overrightarrow{{A_1}N}}|=2\sqrt{5}$,
∴$\left\{\begin{array}{l}{2ab-2{a}^{2}=0}\\{^{2}+4{a}^{2}=20}\end{array}\right.$,解得a=b=2,
∴V${\;}_{{A}_{1}-ABN}$=$\frac{1}{3}{S}_{△ABN}•A{A}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×2×4$=$\frac{8}{3}$.

點(diǎn)評 本題考查了棱錐的體積計算,空間向量在立體幾何中的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.國務(wù)院總理李克強(qiáng)在2015年4月14日的經(jīng)濟(jì)形勢座談會上就“手機(jī)流量資費(fèi)和網(wǎng)速”問題做出重要指示,工信部回應(yīng),將加大今年寬帶專項(xiàng)行動中“加快4G建設(shè)”、“大幅提升網(wǎng)速”等重點(diǎn)工作的推進(jìn)力度,為此某移動部門對部分4G手機(jī)用戶每日使用流量(單位:M)進(jìn)行統(tǒng)計,得到如下記錄:
流量(x)0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.25  0.30 0.25 0.15 0
將手機(jī)日使用流量統(tǒng)計到各組的頻率視為概率,并假設(shè)每天手機(jī)日使用流量相互獨(dú)立.
(Ⅰ)求某人在未來連續(xù)4天里,有連續(xù)3天的手機(jī)日使用流量都不低于15M,且另1天的手機(jī)日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未來3天時間里手機(jī)日使用流量不低于15M的天數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的某一方向的視圖是圓,則它不可能是( 。
A.球體B.圓錐C.圓柱D.長方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖為全等的直角梯形,俯視圖為直角三角形則該幾何體的表面積為( 。
A.6+12$\sqrt{2}$B.16+12$\sqrt{2}$C.6+12$\sqrt{3}$D.16+12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用三種顏色給立方體的八個頂點(diǎn)染色,其中至少有一種顏色恰好染四個頂點(diǎn).則任一條棱的兩個端點(diǎn)都不同色的概率是$\frac{1}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.把邊長為2的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的三視圖如圖所示,則這個三棱錐的表面積為( 。
A.2$\sqrt{3}$+4B.4$\sqrt{3}$C.8D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè),,.

(1)求;

(2)設(shè),且中有且僅有2個元素屬于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正方形ABCD沿對角線BD將△ABD折起,使A點(diǎn)至P點(diǎn),連PC.已知二面角P-BD-C的大小為θ,則下列結(jié)論錯誤的是( 。
A.若θ=90°,則直線PB與平面BCD所成角大小為45°
B.若直線PB與平面BCD所成角大小為45°,則θ=90°
C.若θ=60°,則直線BD與PC所成角大小為90°
D.若直線BD與PC所成角大小為90°,則θ=60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)D是BC的中點(diǎn),AB⊥AC,AB=AC=AA1=2.
(1)求證:A1B∥平面ADC1
(2)求二面角B1-AD-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案