解:(1)分別令n=1,2,3,得
∵a
n>0,∴a
1=1,a
2=2,a
3=3.
(2)由(1)的結(jié)論:猜想a
n=n
1)當(dāng)n=1時(shí),a
1=1成立;
2)假設(shè)當(dāng)n=k時(shí),a
k=k.
那么當(dāng)n=k+1時(shí),
∵2S
k+1=a
k+12+k+1,∴2(a
k+1+S
k)=a
k+12+k+1,
∴a
k+12=2a
k+1+2S
k-(k+1)=2a
k+1+(k
2+k)-(k+1)=2a
k+1+(k
2-1)?[a
k+1-(k+1)][a
k+1+(k-1)]=0.
∵a
k+1+(k-1)>0,∴a
k+1=k+1,這就是說,當(dāng)n=k+1時(shí)也成立,
故對(duì)于n∈N*,均有a
n=n.
(3)當(dāng)n=1,2時(shí),顯然成立.
當(dāng)n≥3時(shí),
…
=
…
…
=
.
分析:(1)分別令n=1,2,3,列出方程組,能夠求出求a
1,a
2,a
3;
(2)猜想:a
n=n,由2S
n=a
n2+n可知,當(dāng)n≥2時(shí),2S
n-1=a
n-12+(n-1),所以a
n2=2a
n+a
n-12-1再用數(shù)學(xué)歸納法進(jìn)行證明;
(3)把數(shù)列{a
n}的通項(xiàng)公式代入
中,利用放縮法即可證明結(jié)論.
點(diǎn)評(píng):本題考查數(shù)列和不等式的綜合應(yīng)用,解題時(shí)要注意各種不同解法的應(yīng)用,平時(shí)做題時(shí)多嘗試一題多解能夠有效地提高解題能力.屬中檔題.