已知數(shù)列為等比數(shù)列,其前n項(xiàng)和為,且滿足成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,求數(shù)列前n項(xiàng)和.
(1);(2) .

試題分析:(1)利用成等差數(shù)列,所以,將其轉(zhuǎn)化為關(guān)于的方程,再代入求其首項(xiàng),從而得到等比數(shù)列的通項(xiàng)公式;
(2)將化簡(jiǎn)得到,這屬于等差數(shù)列等比數(shù)列的形式,和用錯(cuò)位相減法求其和,先列出,再列出2,兩式相減,化簡(jiǎn)得到結(jié)果.
試題解析:(1)設(shè)的公比為q, ∵成等差數(shù)列,
                    1分
, 化簡(jiǎn)得,
                 3分
,∴,
                      6分
(2)∵,,∴           8分
,
2,
,          11分
        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足:其中,數(shù)列滿足:
(1)求;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在正數(shù)k,使得數(shù)列的每一項(xiàng)均為整數(shù),如果不存在,說(shuō)明理由,如果存在,求出所有的k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是各項(xiàng)為不同的正數(shù)的等差數(shù)列,成等差數(shù)列,又
(1)證明:為等比數(shù)列;
(2)如果數(shù)列前3項(xiàng)的和為,求數(shù)列的首項(xiàng)和公差;
(3)在(2)小題的前題下,令為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,a4和a8的等差中項(xiàng)為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為正項(xiàng)等比數(shù)列,,,為等差數(shù)列的前
項(xiàng)和,.
(1)求的通項(xiàng)公式;
(2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若等比數(shù)列滿足,求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}滿足a42+a72+2a4a7=9,則其前10項(xiàng)之和為(        )
A.-9B.-15 C.15D.±15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,=1,,則的值為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足:對(duì)于都有,若,則的通項(xiàng)公式為(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案