【題目】已知函數(shù),實(shí)數(shù)

1)設(shè),判斷函數(shù)上的單調(diào)性,并說(shuō)明理由;

2)若不等式對(duì)恒成立,求的范圍.

【答案】1)函數(shù)上單調(diào)遞增,證明見解析.(2

【解析】

1)根據(jù)反比列函數(shù)的單調(diào)性,即可判斷上的單調(diào)性,由函數(shù)的單調(diào)性的定義即可證明;

2)依題有,恒成立,即恒成立.通過(guò)分離變量可知,恒成立,再分別求出上的最大值,在在上的最小值,解不等式組即可求出的范圍.

1)函數(shù)的定義域?yàn)?/span>,

因?yàn)?/span>,所以上單調(diào)遞增,而,所以函數(shù)上單調(diào)遞增.

設(shè),則

,

因?yàn)?/span>,所以,

,又,因此,,即

故函數(shù)上單調(diào)遞增.

2)依題可得,恒成立,即恒成立.通過(guò)分離變量可知,恒成立.

設(shè),

,所以上單調(diào)遞減,故

設(shè),,

,所以上單調(diào)遞增,故

因此,解得,

的范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱直線l具有性質(zhì)H.

1)求橢圓C的方程;

2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;

3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線、都具有性質(zhì)H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班學(xué)生中喜愛看綜藝節(jié)目的有18人,體育節(jié)目的有27人,時(shí)政節(jié)目的有9人,現(xiàn)采取分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生.

(Ⅰ)求應(yīng)從喜愛看綜藝節(jié)目,體育節(jié)目,時(shí)政節(jié)目的學(xué)生中抽取的學(xué)生人數(shù);

(Ⅱ)若從抽取的6名學(xué)生中隨機(jī)抽取2人分作一組,

1)列出所有可能的結(jié)果;

2)求抽取的2人中有1人喜愛綜藝節(jié)目1人喜愛體育節(jié)目的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫出的所有上界的集合;若不是,也請(qǐng)說(shuō)明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬(wàn)元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為件.

1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);

2)促銷費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C.

1)求橢圓C的離心率;

2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以M,N為直徑的圓是否經(jīng)過(guò)軸上的定點(diǎn)?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)設(shè)橢圓與雙曲線有相同的焦點(diǎn)、,是橢圓與雙曲線的公共點(diǎn),且△的周長(zhǎng)為6,求橢圓的方程;我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為盾圓

2)如圖,已知盾圓的方程為,設(shè)盾圓上的任意一點(diǎn)的距離為,到直線的距離為,求證:為定值;

3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為盾圓,設(shè)過(guò)點(diǎn)的直線與盾圓交于、兩點(diǎn),,,且),試用表示,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是數(shù)列的前項(xiàng)和,對(duì)任意,都有;

1)若,求證:數(shù)列是等差數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;

2)若,求證:數(shù)列是等比數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;

3)設(shè),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案