【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測(cè),每件一等品都能通過(guò)檢測(cè),每件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機(jī)選取件產(chǎn)品,設(shè)至少有一件通過(guò)檢測(cè)為事件,求事件的概率;

(Ⅱ)隨機(jī)選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望.

【答案】(Ⅰ) ; (Ⅱ)見(jiàn)解析.

【解析】試題分析:

(Ⅰ)“至少有一件通過(guò)檢測(cè)”的反面是“沒(méi)有一件通過(guò)檢測(cè)”,即三件都不通過(guò),利用互斥事件的概率可得;

(Ⅱ)求的分布列,首先要確定變量的取值,由于10件中有6件一等品,因此的取值依次為,由古典概型概率公式可得各概率,從而得分布列,再由期望公式可計(jì)算出期望.

試題解析:

(Ⅰ)

所以隨機(jī)選取3件產(chǎn)品,至少有一件通過(guò)檢測(cè)的概率為.

(Ⅱ)由題可知可能取值為.

, ,

, .

則隨機(jī)變量的分布列為

0

1

2

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在外接圓直徑為1的△ABC中,角A,B,C的對(duì)邊分別為a,b,c,設(shè)向量 =(a,cosB), =(b,cosA),且 ,
(1)求sinA+sinB的取值范圍;
(2)若abx=a+b,試確定實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,,平面,四邊形是菱形.

(1)證明:平面平面;

(2)若,,設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的概率分布列為:

ξ

0

1

2

P

則Eξ= , Dξ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,在處的切線(xiàn)方程為.

(1)求, ;

(2)若,證明: .

【答案】(1) ;(2)見(jiàn)解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故 .

(2)由(1)可知,

,可得

,

,

當(dāng)時(shí), , 單調(diào)遞減,且;

當(dāng)時(shí), , 單調(diào)遞增;且,

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,

.

【點(diǎn)睛本題考查利用函數(shù)的切線(xiàn)求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,若直線(xiàn)與曲線(xiàn)相切;

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)在曲線(xiàn)上取兩點(diǎn) 與原點(diǎn)構(gòu)成,且滿(mǎn)足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù));在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線(xiàn)的方程為.

(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

(2)求直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將函數(shù) 的圖象向左平移φ(φ>0)個(gè)單位,所得圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則φ最小時(shí),tanφ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,,,的中點(diǎn).

(1)求證:

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

同步練習(xí)冊(cè)答案