【題目】如圖,四棱錐中,底面,,,,的中點.

(1)求證:;

(2)求證:

(3)求二面角E-AB-C的正切值

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1)根據(jù)線面垂直得到線線垂直;(2)由等腰三角形的性質(zhì)得到由(1)推得,故,進而得到結(jié)果;(3)過點EEFAC,垂足為.過點FFGAB,垂足為G.連結(jié)EG,是二面角的一個平面角,根據(jù)直角三角形的性質(zhì)求解即可.

.

易知,故

(1)證明:底面,

,故

,故

(2)證明:,,故

的中點,故

由(1)知,從而,故

易知,故

(3)過點E作EF⊥AC,垂足為.過點F作FG⊥AB,垂足為G.連結(jié)EG

∵PA⊥AC, ∴PA//EF ∴EF⊥底面且F是AC中點

∴故是二面角的一個平面角.

設(shè),則PA=BC=,EF=AF=

從而FG=,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機選取件產(chǎn)品,設(shè)至少有一件通過檢測為事件,求事件的概率;

(Ⅱ)隨機選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)利用絕對值及分段函數(shù)知識,將函數(shù)的解析式寫成分段函數(shù);

(2)在給出的坐標系中畫出的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過點,且,線段交圓的交點為點,關(guān)于軸的對稱點.

(1)求直線的方程;

(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,點的極坐標為, 直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點, 為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設(shè)點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓的方程為,點為圓上的動點,過點的直線被圓截得的弦長為

(1)求直線的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)(xR)滿足fx=f2-x),且對任意的x1,x2∈(-∞,1]x1x2)有(x1-x2)(fx1-fx2))<0.則(  )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案