已知在三棱錐O-ABC中,OA=OB=OC=1,∠AOB=60°,∠AOC=∠BOC=90°,G是△ABC的重心,求直線OG與BC所成角的余弦值.
考點:異面直線及其所成的角
專題:空間角
分析:以O為原點,OA為y軸,OC為z軸,建立空間直角坐標系,利用向量法能求出直線OG與BC所成角的余弦值.
解答: 解:以O為原點,OA為y軸,OC為z軸,
建立空間直角坐標系,
由已知得A(0,1,0),B(
3
2
,
1
2
,0),
設D為AB中點,則D(
3
4
,
3
4
,0),
C(0,0,1),設G(a,b,c),
∵G是△ABC的重心,∴
CG
=
2
3
CD
,
∴(a,b,c-1)=
2
3
(
3
4
,
3
4
,-1)
=(
3
6
,
1
2
,-
2
3
),
a=
3
6
,b=
1
2
,c=
1
3
,∴G(
3
6
1
2
,
1
3
),
CB
=(
3
2
,
1
2
,-1),
OG
=(
3
6
,
1
2
1
3
),
設直線OG與BC所成角為θ,
∴cosθ=
|
CB
OG
|
|
CB
|•|
OG
|
=
2
8

∴直線OG與BC所成角的余弦值為
2
8
點評:本題考查空間點、線、面的位置關系及學生的空間想象能力、求異面直線角的能力,解題時要注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三棱椎P-ABC中,PA⊥平面ABC,AC=AB=
3
,BC=
6
,∠PBA=
π
3
,點D,E,F(xiàn)分別是PA、PB、PC上的點并且滿足PD:PA=PE:PB=PF:PC=1:3
(Ⅰ)求證:AB⊥DF;
(Ⅱ)設平面ABC與平面AEF所成角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中有兩點A(-1,3
3
)、B(1,
3
),以原點為圓心,r>0為半徑作一個圓,與射線y=-
3
x(x<0)交于點M,與x軸正半軸交于N,則當r變化時,|AM|+|BN|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A、B兩點的坐標分別是A(3cosa,3sina,1),B(2cosb,2sinb,1),則|
AB
|的取值范圍是( 。
A、[0,5]
B、[1,5]
C、(1,5)
D、[1,25]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PD⊥平面ABCD,∠BAD=60°,Q為AD中點,AD=4,PD=6.
(Ⅰ)若點M在線段PC上,且PM=tPC(t>0),試確定實數(shù)t的值,使得PA∥平面MQB;
(Ⅱ)當三棱錐M-BQD的體積為2
3
時,試求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(-2,0),F(xiàn)(1,0),定直線l:x=4,動點P與點F的距離是它到直線l的距離的
1
2
.設點P的軌跡為C,過點F的直線交C于D、E兩點,直線AD、AE與直線l分別相交于M、N兩點.
(1)求C的方程;
(2)試判斷以線段MN為直徑的圓是否過點F,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于△ABC,總滿足:
CD
=sin2θ
CA
+cos2θ
CB
,
CD
AB
=
3
|AB|2,且
1
tan∠A
-
1
tan∠B
-
2
tan∠BDC
=1恒成立,則:
①△ABC一定是鈍角三角形;②CA<CB;③?x∈R,θ=x;
④∠ADC的最小值小于30°;⑤CD可能是一條中線;⑥∠C的最大值小于30°.
上述對于△ABC的描述錯誤的是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=an+n+2n(n∈N*),則an等于( 。
A、
n(n-1)
2
+2n-1-1
B、
n(n-1)
2
+2n-1
C、
n(n+1)
2
+2n+1-1
D、
n(n-1)
2
+2n+1-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C與直線l:x+y-2=0和圓P:(x-6)2+(y-6)2=18均相切,求圓C的面積的最小值及此時圓C的方程.

查看答案和解析>>

同步練習冊答案