45°
分析:先利用正弦定理,將邊轉(zhuǎn)化為角,再利用三角形的內(nèi)角和及和角的三角函數(shù),變形展開,化簡即可得到結(jié)論.
解答:∵△ABC的外接圓半徑為R,且2R(sin
2A-sin
2C)=(
a-b)sinB
∴2R(sin
2A-sin
2C)=
×2RsinAsinB-2RsinBsinB
∴sinAsinA-sinCsinC=
×sinAsinB-sinBsinB
∴sinAsinA-sin(A+B)
2=
×sinAsinB-sinBsinB
∴sinAsinA-sinAsinAcosBcosB-sinBsinBcosAcosA-2sinAcosAsinBcosB=
×sinAsinB-sinBsinB
∴sinAsinA(1-cosBcosB)-sinBsinBcosAcosA-2sinAcosAsinBcosB=
×sinAsinB-sinBsiinB
∴sinAsinAsinBsinB+sinBsinB(1-cosAcosA)-2sinAcosAsinBcosB=
×sinAsinB
∴2sinAsinB(sinAsinB-cosAcosB-
)=0
∴2sinAsinB[-cos(A+B)-
]=0
∵sinA≠0,sinB≠0,
∴-cos(A+B)-
=0
∴cos(A+B)=-
∴A+B=135°
∴C=45°
故答案為:45°.
點(diǎn)評:本題重點(diǎn)考查正弦定理的運(yùn)用,考查三角式的恒等變形,屬于基礎(chǔ)題.