(09年豐臺區(qū)期末理)(13分)

       某中學在高一開設了數(shù)學史等4門不同的選修課,每個學生必須選修,有只能從中選一

門。該校高一的3名學生甲、乙、丙對這4門不同的選修課的興趣相同。

       (Ⅰ)求3個學生選擇了3門不同的選修課的概率;

(Ⅱ)求恰有2門選修課這3個學生都沒有選擇的概率;

(Ⅲ)設隨機變量為甲、乙、丙這三個學生選修數(shù)學史這門課的人數(shù),求的分布列與數(shù)學期望。

解析:(Ⅰ)3個學生選擇了3門不同的選修課的概率:P1 =…… 3分

       (Ⅱ)恰有2門選修課這3個學生都沒有選擇的概率:P2=… 6分

       (Ⅲ)設某一選擇修課這3個學生選擇的人數(shù)為,則=0,1,2,3

              P (= 0 ) =          P (= 1) =

              P (= 2 ) =      P (= 3 ) = ……………… 10分

0

1

2

3

P

              ∴的分布列為:

    

 

 

              ∴期望E= 0×+1+2×+3×=     …………………… 13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)期末理)(13分)

       已知向量=,=,且x。

       (Ⅰ)求?及|?|;

(Ⅱ)若f ( x ) = ?|?|的最小值為,且,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)期末理)(14分)

    設橢圓M(ab>0)的離心率為,長軸長為,設過右焦點F

斜角為的直線交橢圓MA,B兩點。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =

(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)期末理)(14分)

    設橢圓M(ab>0)的離心率為,長軸長為,設過右焦點F

斜角為的直線交橢圓MAB兩點。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)期末理)(14分)

    設橢圓M(ab>0)的離心率為,長軸長為,設過右焦點F

斜角為的直線交橢圓MA,B兩點。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =

(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)期末理)(13分)

       已知函數(shù)f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =? 3ax 4x的義域為[0,1]。

       (Ⅰ)求a的值;

    (Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案