分析 方程f(x)=mx-$\frac{1}{3}$恰有四個不等的實數(shù)根,可化為函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,y=mx-$\frac{1}{3}$恰有四個不同的交點,作出函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,y=mx-$\frac{1}{3}$的圖象,由數(shù)形結(jié)合求解.
解答 解:(x)=mx-$\frac{1}{3}$恰有四個不等的實數(shù)根,
可化為函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,y=mx-$\frac{1}{3}$恰有四個不同的交點,
作出函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,y=mx-$\frac{1}{3}$的圖象,
由已知的C(0,-$\frac{1}{3}$),B(1,0),∴${k}_{BC}=\frac{1}{3}$;
當(dāng)x>1時,f(x)=lnx,f′(x)=$\frac{1}{x}$,
設(shè)切點A的坐標為(x1,lnx1),$\frac{ln{x}_{1}+\frac{1}{3}}{{x}_{1}}=\frac{1}{{x}_{1}}$,得x1=${e}^{\frac{2}{3}}$,
故kAC =$\frac{1}{{x}_{1}}={e}^{-\frac{2}{3}}$,
結(jié)合圖象可得數(shù)m的取值范圍是:($\frac{1}{3}$,e${\;}^{-\frac{2}{3}}$),
故答案為:($\frac{1}{3}$,e${\;}^{-\frac{2}{3}}$).
點評 本題考查了方程的根與函數(shù)的零點的關(guān)系應(yīng)用及函數(shù)的圖象的作法與應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2或-1 | B. | 1或2 | C. | ±1或2 | D. | ±2或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<b<1<c<d | B. | 0<a<b<1<d<c | C. | 1<a<b<c<d | D. | 0<b<a<1<d<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第15項 | B. | 第16項 | C. | 第17項 | D. | 第18項 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com