分析 由題意可知:設(shè)$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),則c=5$\sqrt{2}$,則$\left\{\begin{array}{l}{y=3x-2}\\{\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,整理得:(a2+9b2)x2-12b2x+b2(4-a2)=0,由韋達(dá)定理可知:x1+x2=$\frac{12^{2}}{{a}^{2}+9^{2}}$,由中點(diǎn)坐標(biāo)公式可知:$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2}$,即可求得a2=15b2,則$\left\{\begin{array}{l}{{a}^{2}-^{2}=50}\\{{a}^{2}=3^{2}}\end{array}\right.$,即可求得$\left\{\begin{array}{l}{{a}^{2}=25}\\{^{2}=75}\end{array}\right.$,即可求得橢圓方程.
解答 解:由題意可知:焦點(diǎn)為${F_1}(0,-5\sqrt{2})$,可知焦點(diǎn)在y軸上,
設(shè)$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),則c=5$\sqrt{2}$,
直線y=3x-2與橢圓相交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=3x-2}\\{\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,整理得:(a2+9b2)x2-12b2x+b2(4-a2)=0,
由韋達(dá)定理可知:x1+x2=$\frac{12^{2}}{{a}^{2}+9^{2}}$,
由中點(diǎn)坐標(biāo)公式可得,$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2}$,即$\frac{6^{2}}{{a}^{2}+9^{2}}$=$\frac{1}{2}$,整理得:a2=15b2,
∴$\left\{\begin{array}{l}{{a}^{2}-^{2}=50}\\{{a}^{2}=3^{2}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}^{2}=25}\\{^{2}=75}\end{array}\right.$,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{75}=1$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理及中點(diǎn)坐標(biāo)公式的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {0,1] | C. | {-1,0,1} | D. | N⊆{-2,-1,0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 99 | B. | 88 | C. | 77 | D. | 66 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y-2=0 | B. | y-1=0 | C. | x-y=0 | D. | x+3y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)>f(3) | B. | f(2)>f(5) | C. | f(3)>f(5) | D. | f(3)>f(6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com