【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與(均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.
(3)推廣期結(jié)束后,為更好的服務(wù)乘客,車隊(duì)隨機(jī)調(diào)查了100人次的乘車支付方式,得到如下結(jié)果:
表2
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
人次 | 10 | 60 | 30 |
已知該線路公交車票價(jià)2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)査結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有5名乘客享受7折優(yōu)惠,有10名乘客享受8折優(yōu)惠,有15名乘客享受9折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有1萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),試估計(jì)該車隊(duì)一輛車一年的總收入.
參考數(shù)據(jù):
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
參考公式:
對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.
【答案】(1)適宜作為掃碼支付的人數(shù)關(guān)子活動(dòng)推出天數(shù)的回歸方程類型;(2)見解析(3)(元).
【解析】
(1)由于散點(diǎn)圖呈指數(shù)型增長(zhǎng),則更適宜;
(2)將非線性的回歸方程,利用對(duì)數(shù)的運(yùn)算性質(zhì)轉(zhuǎn)化為線性的,再利用最小二乘法求解即可得出回歸方程,并代值,即可得出第8天使用掃碼支付的人次;
(3)分別計(jì)算出每個(gè)月三種支付方式的收入,即可得出該車隊(duì)一輛車一年的總收入.
(1)根據(jù)散點(diǎn)圖判斷,適宜作為掃碼支付的人數(shù)關(guān)子活動(dòng)推出天數(shù)的回歸方程類型.
(2)∵,兩邊同時(shí)取常用對(duì)數(shù)得:;
設(shè),∴,∵,,,
∴,
把代入,得:∴,∴,
∴
把代入上式:∴;
∴活動(dòng)推出第8天使用掃碼支付的人次為,
∴關(guān)于的回歸方程為,,活動(dòng)推出第8天使用掃碼支付的人次為3470.
(3)由題意可知:一個(gè)月中使用現(xiàn)金的乘客有1000人,共收入元;使用乘車卡的乘客有6000人,共收入元;
使用掃碼支付的乘客有3000人,
其中:享受7折優(yōu)惠的有500人,共收入元,
享受8折優(yōu)惠的有1000人,共收入元,
享受9折優(yōu)惠的有1500人,共收入元,
所以,一輛車一個(gè)月的收入為:(元),
所以,一輛車一年的收入為:(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為加強(qiáng)對(duì)銷售員的考核與管理,從銷售部門隨機(jī)抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.
(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對(duì)該銷售小組給予獎(jiǎng)勵(lì),否則不予獎(jiǎng)勵(lì).試判斷該公司是否需要對(duì)抽取的銷售小組發(fā)放獎(jiǎng)勵(lì);
(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請(qǐng)專業(yè)機(jī)構(gòu)對(duì)這5名銷售員的月均銷售額逐一進(jìn)行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點(diǎn).已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)若在區(qū)間上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),,在線段上,且.
(1)證明:面;
(2)若,面面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)次.
方式二:混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn),若不是陽性,檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.現(xiàn)取其中份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)若,試求關(guān)于的函數(shù)關(guān)系式;
(2)若與干擾素計(jì)量相關(guān),其中是不同的正實(shí)數(shù),滿足且都有成立.
(。┣笞C:數(shù)列為等比數(shù)列;
(ⅱ)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求的最大值.
(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),其坐標(biāo)滿足條件:的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):
①;②;③;④.其中是“柯西函數(shù)”的為( )
A.①②B.③④C.①③D.②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com