函數(shù)f(x)=
1
x
1n(
-x2-3x+4
)
的定義域?yàn)椋ā 。?/div>
A、{x|-1<x<4}
B、{x|-4<x<1且x≠0}
C、{x|-4≤x≤3且x≠0}
D、{x|-1<x<4}
分析:根據(jù)對(duì)數(shù)函數(shù)的定義可得因?yàn)樨?fù)數(shù)和0沒(méi)有對(duì)數(shù),所以真數(shù)要大于0,以及分母不為零,列出不等式組求出解集即可.
解答:解:依題意得
x≠0
-x2-3x+4>0

解得-4<x<1且x≠0,
故選B.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的定義域,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1

(1)當(dāng)x∈[1,+∞)時(shí),判斷f(x)的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù)..若關(guān)于x的方程g(x)=0在(0,2)上有兩個(gè)解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-
12
x2
,其導(dǎo)函數(shù)為f′(x).
(1)求f′(x)的最小值;
(2)證明:對(duì)任意的x1,x2∈[0,+∞)和實(shí)數(shù)λ1≥0,λ2≥0且λ12=1,總有f(λ1x12x2)≤λ1f(x1)+λ2f(x2);
(3)若x1,x2,x3滿足:x1≥0,x2≥0,x3≥0且x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋(gè)函數(shù)值計(jì)算出,再求和,對(duì)函數(shù)值個(gè)數(shù)較少時(shí)是常用方法,但函數(shù)值個(gè)數(shù)較多時(shí),運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請(qǐng)求出上述結(jié)果,并用此方法求解下面問(wèn)題:
問(wèn)題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泗陽(yáng)縣模擬)已知函數(shù)f(x)=lnx-ax+
1-a
x
-1
(a∈R).
(Ⅰ) 當(dāng)a≥0時(shí),討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=x2-2bx+4.當(dāng)a=
1
4
時(shí),
(i)若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b取值范圍.
(ii) 對(duì)于任意x1,x2∈(1,2]都有|f(x1)-f(x2)|≤λ|
1
x1
-
1
x2
|
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉興一模)已知函數(shù)f(x)=
1
2
x2-(2a+2)x+(2a+1)lnx

(I )求f(x)的單調(diào)區(qū)間;
(II)對(duì)任意的a∈[
3
2
,
5
2
],x1,x2∈[1,2]
,恒有|f(x1)|-f(x2)≤λ|
1
x1
-
1
x2
|
,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案