已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<2π)圖象上的一個(gè)最高點(diǎn)是(2,
2
),由這個(gè)最高點(diǎn)到相鄰的最低點(diǎn)圖象與x軸的交點(diǎn)為(6,0),則f(x)=(  )
A、
2
sin(
π
4
x+
π
4
B、
2
sin(
π
4
x-
π
8
C、
2
sin(
π
8
x+
π
4
D、
2
sin(
π
8
x-
π
4
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由圖象上的一個(gè)最高點(diǎn)可得A,再由最高點(diǎn)到相鄰的最低點(diǎn)圖象與x軸的交點(diǎn)可得周期,由周期公式求得ω,然后代入點(diǎn)的坐標(biāo)求φ,則函數(shù)解析式可求.
解答: 解:由于圖象上的一個(gè)最高點(diǎn)是(2,
2
),且A>0,
∴A=
2
,依題意知,
ω
=16

∴ω=
π
8

又圖象經(jīng)過(2,
2
),
2
sin(
π
4
+φ)=
2
,0<φ<2π,
π
4
+φ=
π
2

∴φ=
π
4

∴f(x)=
2
sin(
π
8
x+
π
4
)

故選:C.
點(diǎn)評:本題考查了由y=Asin(ωx+φ)的部分圖象求函數(shù)解析式,關(guān)鍵是學(xué)生對題意的理解,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為
 
(保留一位小數(shù)).
參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列兩個(gè)函數(shù)為相等函數(shù)的是( 。
A、y=1與y=x0
B、y=alogax 與y=logaax(a>0,且a≠1)
C、y=
x2
與y=(
x
)
2
D、y=lg(1+x)+lg(1-x)與y=lg(1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
4
x4-
1
3
x3+x2-2在R上的極值點(diǎn)有( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上可導(dǎo)的函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí)取得極小值,則
b-4
a-3
的取值范圍是( 。
A、(-
1
2
1
2
B、(-
1
2
,
1
4
C、(
1
4
,1)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xf′(x)的圖象如圖所示,下面四個(gè)圖象中y=f(x)的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),α,β是鈍角三角形的兩個(gè)銳角,則下列不等式關(guān)系中正確的是( 。
A、f(sinα)>f(cosβ)
B、f(cosα)<f(cosβ)
C、f(cosα)>f(cosβ)
D、f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國共產(chǎn)黨第十八屆中央委員會(huì)第二次全體會(huì)議于2013年2月26日至28日在北京順利舉行,兩名大學(xué)生志愿者甲與乙被安排在26日下午參加接待工作,工作時(shí)間均在13時(shí)至18時(shí)之間,已知甲連續(xù)工作2小時(shí),乙連續(xù)工作3小時(shí),則17時(shí)甲、乙都在工作的概率是(  )
A、
1
6
B、
1
2
C、
1
3
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
12
),x∈R.
(1)求f(
π
3
)的值;    
(2)若cosθ=
3
5
,θ∈(0,
π
2
),求f(2θ-
π
6
).

查看答案和解析>>

同步練習(xí)冊答案