【題目】設(shè)為下述正整數(shù)的個(gè)數(shù):的各位數(shù)字之和為,且每位數(shù)字只能取,

(1)求,,的值;

(2)對,試探究的大小關(guān)系,并加以證明.

【答案】(1),,;(2),證明詳見解析.

【解析】

1)根據(jù)已知條件,依次取,列出符合的正整數(shù),從而得到個(gè)數(shù),得到所求結(jié)果;(2)由(1)猜想可知:,首先證得當(dāng)時(shí),,再用數(shù)學(xué)歸納法證得,接著用數(shù)學(xué)歸納法證明猜想的結(jié)論成立.

(1),則 ;

,則 ;

,則 ;

,則,,, ;

綜上:,,,

(2)由(1)猜想:

,其中

假定,刪去,則當(dāng)依次取時(shí),分別等于,,

故當(dāng)時(shí),

先用數(shù)學(xué)歸納法證明下式成立:

時(shí),由(1)得:,結(jié)論成立;

②假設(shè)當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),結(jié)論成立;

綜合①②,,

再用數(shù)學(xué)歸納法證明下式成立:

①當(dāng)時(shí),由(1)得:,結(jié)論成立;

②假設(shè)當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),結(jié)論成立;

綜合①②,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,則下列結(jié)論正確的是(

A.直線的傾斜角是B.若直線

C.點(diǎn)到直線的距離是D.與直線平行的直線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[6570),第二組[70,75),第二組[7580),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實(shí)數(shù)的值;

2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實(shí)地考察小隊(duì),出發(fā)前,用簡單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊(duì)長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。

1)求直線的普通方程和圓的直角坐標(biāo)方程;

2)設(shè)圓與直線交于兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓軸交于兩點(diǎn),設(shè)直線的方程為.

(1)當(dāng)直線與圓相切時(shí),求直線的方程;

(2)已知直線與圓相交于兩點(diǎn).(i),求直線的方程;(ii)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競爭力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程

(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計(jì)值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形,,的中點(diǎn).

(1)證明:;

(2)設(shè),三棱錐的體積,求二面角DAEC的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面平面ABCP、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為是邊長為2的正三角形,,.

1)求證:面平面PAB;

2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案