16.已知函數(shù)f(x)=loga(x-1)-2(a>0且a≠1),則函數(shù)恒過定點(2,-2).

分析 根據對數(shù)函數(shù)的恒過點性質求解.

解答 解:根據對數(shù)函數(shù)的恒過點性質:
可得:x-1=1,
解得:x=2.
那么:y=)=loga1-2=-2.
則函數(shù)恒過定點為(2,-2).
故答案為(2,-2).

點評 本題考查了對數(shù)函數(shù)的恒過點性質.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知向量$\overrightarrow{AB}$=(1,5,-2),$\overrightarrow{BC}$=(3,1,2),$\overrightarrow{DE}$=(x,-3,6).若DE∥平面ABC,則x的值是( 。
A.5B.3C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=$\frac{x+4}{\sqrt{x}}$的定義域是(0,+∞);最小值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當x∈[0,2]時,F(xiàn)(x)=f(x)-g(x)為增函數(shù),求實數(shù)m的取值范圍;
(2)若m∈(-1,0),設函數(shù)$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,求證:對任意x1,x2∈[1,1-m],G(x1)<H(x2)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知α是第二象限角,且sinα=$\frac{3}{5}$,則cos(π-α)=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+t,t∈R.
(Ⅰ)如果函數(shù)f(x)是R上的奇函數(shù),求實數(shù)t的值.
(Ⅱ)判斷f(x)在R上的單調性,并用定義證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最小內角的余弦值等于$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過x的最大整數(shù),則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知四棱錐P-ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M-BD-C的平面角的大小.

查看答案和解析>>

同步練習冊答案