【題目】下列函數(shù)中,既是偶函數(shù)又存在零點的是( )
A.y=lnx
B.
C.y=sinx
D.y=cosx
【答案】D
【解析】選項A:y=lnx的定義域為故y=lnx不具備奇偶性,故A錯誤;選項B:是偶函數(shù),但=0無解,即不存在零點,故B錯誤;選項C:y=sinx是奇函數(shù),故C錯;選項D:y=cosx是偶函數(shù),且故D項正確。
【考點精析】掌握函數(shù)的奇偶性和函數(shù)的零點與方程根的關(guān)系是解答本題的根本,需要知道偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱;二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對于不相等的實數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對于任意不相等的實數(shù)x1, x2 , 都有m>0;
(2)對于任意的a及任意不相等的實數(shù)x1, x2 , ,都有n>0;
(3)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=n;
(4)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(a>b>0)過點(0,),且離心率為。
(Ⅰ)求橢圓E的方程;
(II)設(shè)直線x my 1,(m R)交橢圓E與A,B兩點,判斷點G(-,0)與以線段AB為直徑的圓的位置關(guān)系,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖北)某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)兩種產(chǎn)品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為
(Ⅰ)求Z的分布列和均值;該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(Ⅱ) 若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值在其定義域內(nèi)都存在唯一的使成立,則稱該函數(shù)為“依賴函數(shù)”.
(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上為“依賴函數(shù)”,求實數(shù)乘積的取值范圍;
(3)已知函數(shù)在定義域上為“依賴函數(shù)”,若存在實數(shù)使得對任意的有不等式都成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),下列命題:①時,為奇函數(shù);②的圖象關(guān)于中心對稱;③,時,方程只有一個實根;④方程至多有兩個實根,其中正確的個數(shù)有
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)(I)求的單調(diào)區(qū)間和極值;
(2)(II)證明:若存在零點,則的區(qū)間(1,]上僅有一個零點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(2015·重慶)如題(20)圖,三棱錐中,平面平面,,點D、E在線段上,且,點在線段上,且
(1)證明:平面.
(2)若四棱錐P-DFBC的體積為7,求線段BC的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊”參加兩輪活動,求:
(1)“星隊”至少猜對3個成語的概率;
(2)“星隊”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com