【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對于不相等的實數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對于任意不相等的實數(shù)x1, x2 , 都有m>0;
(2)對于任意的a及任意不相等的實數(shù)x1, x2 , ,都有n>0;
(3)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=n;
(4)對于任意的a , 存在不相等的實數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫出所有真命題的序號).
【答案】①④
【解析】設(shè)A(x1, f(x1)), B(x2, f(x2)), C(x1, g(x1)), D(x2, g(x2)), 對(1), 從y=2x的圖像可看出, m=KAB>0,恒成立, 故正確。對(2), 直線CD的斜率可為負, 即n<0, 故不正確。對(3),由m=n得f(x1)-f(x2)=g(x1)-g(x2), 即f(x1)-g(x1)=f(x2))-g(x2), 令h(x)=f(x)-g(x)=2x-x2-ax. 則h'(x)=2xln2-2x-a. 由 h'(x)=0得, 2xln2=2x+a, 做出y=2xln2, y=2x+a的圖像可知, 方程2xln2=2x+a不一定有解, 所以h(x)不一定有極值點, 即對任意的a,不一定存在不相等的實數(shù)x1, x2,使得h(x1)=h(x2),即不一定存在不相等得實數(shù)x1, x2使得m=n,故不正確。
對(4),由m=-n得f(x1)-g(x1)=f(x2))-g(x2), 即f(x1)+g(x1)=f(x2))+g(x2), 令h(x)=f(x)+g(x)=2x+x2+ax. 則h'(x)=2xln2+2x+a.
h'(x)=0得, 2xln2=-2x-a, 做出y=2xln2, y=-2x-a的圖像可知, 方程2xln2=-2x-a一定有解, 所以h(x)一定有極值點, 即對任意的a,一定存在不相等的實數(shù)x1, x2,使得h(x1)=h(x2),即一定存在不相等得實數(shù)x1, x2使得m=n,故不正確。
【考點精析】根據(jù)題目的已知條件,利用導數(shù)的幾何意義的相關(guān)知識可以得到問題的答案,需要掌握通過圖像,我們可以看出當點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導數(shù)就是切線PT的斜率k,即.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·新課標1卷)設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0 , 使得f(x0)<0,則a的取值范圍是( )
A.[-,1)
B.[-,)
C.[,)
D.[,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行電腦知識競賽,現(xiàn)將高一參賽學生的成績進行整理后分成五組繪制成如圖所示的頻率分布直方圖,已知圖中從左到右的第一、二、三、四、五小組的頻率分別是0.30,0.40,0.15,0.10,0.05.
求:(1)高一參賽學生的成績的眾數(shù)、中位數(shù);
(2)高一參賽學生的平均成績.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·四川)如圖,橢圓E:的離心率是,點P(0,1)在短軸CD上, 且.
(1)求橢圓E的方程;
(2)設(shè)O為坐標原點,過點P的動直線與橢圓交于A、B兩點.是否存在常數(shù)λ , 使得為定值?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·四川)如圖,橢圓E:的離心率是,過點P(0,1)的動直線l與橢圓相交于A,B兩點,當直線l平行與x軸時,直線l被橢圓E截得的線段長為2.
(1)求橢圓E的方程;
(2)在平面直角坐標系xOy中,是否存在與點P不同的定點Q,使得恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個零點(記為an), 且0<an-<()n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·湖南)在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)如圖I所示
若將運動員按成績由好到差編為1~35號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間[139,151]上的運動員人數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com