9.已知平面向量$\overrightarrow{i}$,$\overrightarrow{j}$是單位向量,且$\overrightarrow{i}$•$\overrightarrow{j}$=$\frac{1}{2}$,若平面向量$\overrightarrow{a}$滿足:$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$,則|$\overrightarrow{a}$|=2.

分析 求出$\overrightarrow{i},\overrightarrow{j}$的夾角,由$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$可知$\overrightarrow{a}$平分$\overrightarrow{i},\overrightarrow{j}$的夾角,根據(jù)數(shù)量積的定義列方程解出|$\overrightarrow{a}$|.

解答 解:∵$\overrightarrow{i}$,$\overrightarrow{j}$是單位向量,$\overrightarrow{i}•\overrightarrow{j}=\frac{1}{2}$,∴平面向量$\overrightarrow{i},\overrightarrow{j}$的夾角為60°,
∵$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$,∴$\overrightarrow{a}$為<$\overrightarrow{i},\overrightarrow{j}$>的角平分線,
∴$\overrightarrow{a}•\overrightarrow{i}=|\overrightarrow{a}|$cos30°=$\sqrt{3}$,
∴|$\overrightarrow{a}$|=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中與f(x)=2x+2-x具有相同的奇偶性的是( 。
A.y=sinxB.y=x2+x+1C.y=|x|D.y=|lgx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(理)某學(xué)習(xí)小組共12人,其中有五名是“三好學(xué)生”,現(xiàn)從該小組中任選5人參加競賽,用ξ表示這5人中“三好學(xué)生”的人數(shù),則下列概率中等于$\frac{C_7^5+C_5^1C_7^4}{{C_{12}^5}}$的是( 。
A.P(ξ=1)B.P(ξ≤1)C.P(ξ≥1)D.P(ξ≤2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓Γ:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的中心為O,一個(gè)方向向量為$\overrightarrow1fyx0dh$=(1,k)的直線l與Γ只有一個(gè)公共點(diǎn)M.
(1)若k=1且點(diǎn)M在第二象限,求點(diǎn)M的坐標(biāo);
(2)若經(jīng)過O的直線l1與l垂直,求證:點(diǎn)M到直線l1的距離d≤$\sqrt{5}$-2;
(3)若點(diǎn)N、P在橢圓上,記直線ON的斜率為k1,且$\overrightarrowmajwjyh$為直線OP的一個(gè)法向量,且$\frac{{k}_{1}}{k}$=$\frac{4}{5}$,求|ON|2+|OP|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,點(diǎn)D在BC邊所在直線上,若$\overrightarrow{CD}$=4$\overrightarrow{BD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則2m+n的值等于( 。
A.$\frac{4}{3}$B.3C.$\frac{8}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{33}}{7}$,且(4,0)在橢圓C上,圓M:x2+y2=r2與直線l:y=8x的一個(gè)交點(diǎn)的橫坐標(biāo)為1.
(1)求橢圓C的方程與圓M的方程;
(2)已知A(m,n)為圓M上的任意一點(diǎn),過點(diǎn)A作橢圓C的兩條切線l1,l2.試探究直線l1,l2的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,若a4,a8是方程3x2-11x+9=0的兩根,則a6的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>0,b>0,若a+b=1,則$\frac{1}{2a+1}+\frac{4}{2b+1}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正三棱柱ABC-A1B1C1的所有頂點(diǎn)都在半徑為1的球面上,當(dāng)正三棱錐的體積最大時(shí),該正三棱錐的高為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案