6.函數(shù)f(x)=mx2-2x+3在[-2,+∞)上遞減,則實(shí)數(shù)m的取值范圍[-$\frac{1}{2}$,0].

分析 通過(guò)討論m的范圍,結(jié)合二次函數(shù)的性質(zhì),求出m的范圍即可.

解答 解:m=0時(shí):f(x)=-2x+3,在R上遞減,符合題意;
m≠0時(shí):f(x)是二次函數(shù),對(duì)稱(chēng)軸x=$\frac{1}{m}$≤-2,且m<0,
解得:-$\frac{1}{2}$≤m<0,
綜上:-$\frac{1}{2}$≤m≤0,
故答案為:[-$\frac{1}{2}$,0].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查分類(lèi)討論思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若不等式|2x+1|-|x-4|≥m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-1]B.(-∞,-$\frac{5}{2}$]C.(-∞,-$\frac{9}{2}$]D.(-∞,-5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(2x+1)定義域是[-1,0],則y=f(x+1)的定義域是( 。
A.[-1,1]B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0),f(x)的圖象相鄰兩條對(duì)稱(chēng)軸的距離為$\frac{π}{4}$.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)將f(x)的圖象上所有點(diǎn)向左平移m(m>0)個(gè)長(zhǎng)度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱(chēng)中心為($\frac{π}{6}$,0),當(dāng)m取得最小值時(shí),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)p:A={x|2x2-3ax+a2<0},q:B={x|x2+3x-10≤0}.
(Ⅰ)求A;
(Ⅱ)當(dāng)a<0時(shí),若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax+(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t-2x)>0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,設(shè)g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值為-1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,底面積為S,點(diǎn)D,E,F(xiàn)在側(cè)棱AA1,BB1,CC1上,且AD=h1,BE=h2,CF=h3,求幾何體ABC-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三內(nèi)角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果x2+ky2=3表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是( 。
A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案