【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,兩個(gè)頂點(diǎn)分別為A(﹣a,0),B(a,0),點(diǎn)M(﹣1,0),且3 = ,過(guò)點(diǎn)M斜率為k(k≠0)的直線交橢圓E于C,D兩點(diǎn),其中點(diǎn)C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1 , k2 , 求證: 為定值.
【答案】
(1)解:因?yàn)? = ,所以3(﹣1+a,0)=(a+1,0),解得a=2.
又因?yàn)? = ,所以c= ,所以b2=a2﹣c2=1,
所以橢圓E的方程為 +y2=1.
(2)解:設(shè)點(diǎn)C的坐標(biāo)為(x0,y0),y0>0,
則 =(﹣1﹣x0,﹣y0), =(2﹣x0,﹣y0).
因?yàn)锽C⊥CD,所以(﹣1﹣x0)( 2﹣x0)+y02=0. ①
又因?yàn)? +y02=1,②
聯(lián)立①②,解得x0=﹣ ,y0= ,
所以k= =2
(3)解:設(shè)C(x0,y0),則CD:y= (x+1)(﹣2<x0<2且x0≠﹣1),
由 消去y,
得x2+8y02x+4y02﹣4(x0+1)2=0.
又因?yàn)? +y02=1,所以得D( , ),
所以 = = =3,
所以 為定值.
【解析】(1)由3 = ,得a 即可;(2)設(shè)點(diǎn)C的坐標(biāo)為(x0 , y0),y0>0,由BC⊥CD,得(﹣1﹣x0)( 2﹣x0)+y02=0.解得x0=﹣ ,y0= ,即可.(3),設(shè)C(x0 , y0),則CD:y= (x+1)(﹣2<x0<2且x0≠﹣1), 由 消去y,得x2+8y02x+4y02﹣4(x0+1)2=0,得D( , ),可求 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n,s,t∈R+ , m+n=2, + =9,其中m,n是常數(shù),當(dāng)s+t取最小值 時(shí),m,n對(duì)應(yīng)的點(diǎn)(m,n)是橢圓 =1的一條弦的中點(diǎn),則此弦所在的直線方程 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果把直角三角形的三邊都增加同樣的長(zhǎng)度,則這個(gè)新的三角形的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長(zhǎng)度決定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知t>0,函數(shù)f(x)= ,若函數(shù)g(x)=f(f(x)﹣1)恰有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.若sinC+sin(B﹣A)=sin2A,則△ABC的形狀為( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在無(wú)重復(fù)數(shù)字的五位數(shù)a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5時(shí)稱為波形數(shù),如89674就是一個(gè)波形數(shù),由1,2,3,4,5組成一個(gè)沒(méi)有重復(fù)數(shù)字的五位數(shù)是波形數(shù)的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式x2﹣4x>2ax+a對(duì)一切實(shí)數(shù)x都成立,則實(shí)數(shù)a的取值范圍是( )
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 =( )
A.﹣
B.
C.±
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通項(xiàng)公式;
(II)求數(shù)列{ }的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com