已知函數(shù)f(x)=x-x-1.
(Ⅰ) 判斷函數(shù)f(x)的奇偶性,并證明
(Ⅱ) 證明函數(shù)f(x)在(0,+∞)上為增函數(shù).
分析:(I)先求出函數(shù)的定義域,并且判斷是否關(guān)于原點(diǎn)對(duì)稱,再驗(yàn)證f(x)和f(-x)的關(guān)系,根據(jù)函數(shù)的奇偶性的定義進(jìn)行判定即可;
(II)利用函數(shù)單調(diào)性的定義進(jìn)行證明,即取值-作差-變形-判斷符號(hào)-下結(jié)論,從而得到單調(diào)性.
解答:解:(I)f(x)=x-x
-1的定義域?yàn)閧x|x≠0},
f(-x)=-x+x
-1=-f(x)
∴函數(shù)f(x)為奇函數(shù)
(II)任取x
1,x
2∈(0,+∞),不妨設(shè)x
1<x
2,則有
| f(x1)-f(x2)=x1--(x2-) | =(x1-x2)+(-) | =(x1-x2)+() | =(x1-x2)(1+) | = |
| |
∵x
1,x
2∈(0,+∞)且x
1<x
2∴x
1-x
2<0,x
1x
2+1>0,x
1x
2>0
∴f(x
1)-f(x
2)<0
即f(x
1)<f(x
2)
∴函數(shù)f(x)在(0,+∞)上是增函數(shù).
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性,單調(diào)性的證明,同時(shí)考查了計(jì)算能力,屬于中檔題.