不等式ax2+ax+1>0對任意實數(shù)x都成立,則a的范圍用區(qū)間表示為
 
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得a=0,或
a>0
△=a2-4a<0
,由此能求出實數(shù)a的取值范圍.
解答: 解:∵不等式ax2+ax+1>0對任意x∈R恒成立,
∴a=0,或
a>0
△=a2-4a<0

解得0≤a<4,
故答案為:[0,4).
點評:本題主要考查二次函數(shù)的性質(zhì),體現(xiàn)了分類討論的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx,0<x≤e
2-lnx,x>e
,若a、b、c互不相等,且f(a)=f(b)=f(c),則a+b+c取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:
1
a1
+
1
a2
+
1
a3
+…+
1
an
=n2(n∈N*)
,令bn=anan+1,Sn為數(shù)列{bn}的前n項和.
(1)求an和Sn;
(2)對任意的正整數(shù)n,不等式Sn>λ-
1
2
恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的右焦點為F,P是第一象限內(nèi)C上的點,Q為雙曲線左準線上的點,若OP垂直平分FQ,則雙曲線的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),滿足對稱軸為直線x=1,且方程f(x)=x有兩個相等實根,
(1)求f(x)的解析式;
(2)是否存在實數(shù)m,n(m<n),使f(x)的定義域為[m,n],值域為[3m,3n],若存在,求出m,n的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程0.7x-0.001x=0的實數(shù)根的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當x≠0時,f′(x)+
f(x)
x
>0,則關(guān)于的函數(shù)g(x)=f(x)+
2
x
的零點個數(shù)為( 。
A、0B、1
C、2D、0或 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2x-3的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列對應(yīng)關(guān)系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根;
②A=R,B=R,f:x→x的倒數(shù);
③A=R,B=R,f:x→x2-2;
④A表示平面內(nèi)周長為5的所有三角形組成集合,B是平面內(nèi)所有的點的集合,f:三角形→三角形的外心.
其中是A到B的映射的是( 。
A、③④B、②④C、①③D、②③

查看答案和解析>>

同步練習冊答案