【題目】如圖,在中, , 邊上的高,沿折起,使

(Ⅰ)證明:平面平面;

(Ⅱ)的中點(diǎn),求與底面所成角的正切值。

【答案】(1)見解析;(2).

【解析】此題主要考查面面垂直和異面直線夾角公式的求法,第二問解題的關(guān)鍵是作出輔助線,此題是一道中檔題,也是高考必考題;(1)已知在△ABC中,ADBC上的高,沿AD△ABC折起,使∠BDC=60°,可得AD⊥DC,AD⊥DB,根據(jù)面面垂直的判定定理進(jìn)行求解;

2)作輔助線,取DC中點(diǎn)F,連接EF,則EF∥BD,可得∠AEF為異面直線AEBD所成的角,再根據(jù)余弦定理和向量公式進(jìn)行求解;

解(折起前AD是BC邊上的高,

當(dāng)Δ ABD折起后,ADDC,ADDB,又DBDC=D,

AD平面BDC,AD 平面平面BDC平面ABD平面BDC。----4

)由 BDC=及()知DA,DB,DC兩兩垂直,不防設(shè)=1,以D為坐標(biāo)原點(diǎn),以所在直線軸建立如圖所示的空間直角坐標(biāo)系,

易得D0,0,0),B1,0,0),C0,3,0),A0,0),E,0),

=, =1,0,0,),

夾角的余弦值為

=

--------12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于, 兩點(diǎn),點(diǎn)的坐標(biāo)為.當(dāng)變化時(shí),解答下列問題:

(1)以為直徑的圓能否經(jīng)過點(diǎn)?說明理由;

(2)過, , 三點(diǎn)的圓在軸上截得的弦長(zhǎng)是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如下圖所示,3月至7月房?jī)r(jià)上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房?jī)r(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸方程;

(2)政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅的銷售均價(jià).

參考數(shù)據(jù): , ;

回歸方程中斜率和截距的最小二乘法估計(jì)公示分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請(qǐng)用五點(diǎn)作圖法畫出f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A﹣BCD中,AB=CD,且直線AB與CD成60°角,點(diǎn)M、N分別是BC、AD的中點(diǎn),求直線AB和MN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,﹣),(0,)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若 , 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且,令cnb2n(nN*),求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

同步練習(xí)冊(cè)答案