已知橢圓的左、右焦點分別為、, 焦距為2,過作垂直于橢圓長軸的弦長為3
(1)求橢圓的方程;
(2)若過點的動直線交橢圓于A、B兩點,判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍
(1)橢圓方程為;(2)存在定點,使以AB為直徑的圓恒過點 

試題分析:(1) 過作垂直于橢圓長軸的弦長為,由此可得,解得,從而可得橢圓的方程 (2)首先考慮直線的斜率不存在的情況 當過直線的斜率存在時,設直線的方程為,設, 由 得: 當為鈍角時,,利用韋達定理將不等式化為含的不等式,解此不等式即可得的取值范圍
試題解析:(1)依題意                                 (2分)
解得,∴橢圓的方程為:                  (4分)
(2)(i)當過直線的斜率不存在時,點,
,顯然不為鈍角                        (5分)
(ii)當過直線的斜率存在時,設斜率為,則直線的方程為,
, 由 得:
 恒成立
                             (8分)

                  (11分)
為鈍角時,<0,
綜上所述,滿足條件的直線斜率k滿足                  (13分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
(1)求橢圓C的標準方程。
(2)過點Q(0,)的直線與橢圓交于A、B兩點,與直線y=2交于點M(直線AB不經(jīng)過P點),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù),使得若存在,求出名的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(2)設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓中,左焦點為, 右頂點為, 短軸上方端點為,若,則該橢圓的離心率為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當直線AM的斜率為1時,求點M的坐標;
(2)當直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若斜率為的直線l與橢圓=1(a>b>0)有兩個不同的交點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(-a,0).若|AB|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓=1的焦距為2,求橢圓上的一點到兩個焦點的距離之和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距為2,則m的取值是 ( 。
A.7B.5C.5或7D.10

查看答案和解析>>

同步練習冊答案