【題目】某校從學生文藝部6名成員(4男2女)中,挑選2人參加學校舉辦的文藝匯演活動.
(1)求男生甲被選中的概率;
(2)在已知男生甲被選中的條件下,女生乙被選中的概率;
(3)在要求被選中的兩人中必須一男一女的條件下,求女生乙被選中的概率.
【答案】(1);(2);(3).
【解析】
(1)將所有的基本事件一一列舉出來,從中找出該事件所發(fā)生的基本事件,從而計算概率;
(2)利用條件概率的公式即可計算結(jié)果;
(3)與(2)解法相同.
(1)記4名男生為A,B,C,D,2名女生為a,b,
從6名成員中挑選2名成員,有
,,,,,,,,
,,,,,,共有15種情況,,
記“男生甲被選中”為事件M,不妨假設(shè)男生甲為A
事件M所包含的基本事件數(shù)為,,,,
共有5種,故.
(2)記“男生甲被選中”為事件,“女生乙被選中”為事件,
不妨設(shè)女生乙為,
則,又由(1)知,
故.
(3)記“挑選的2人一男一女”為事件,則,
“女生乙被選中”為事件,,
故.
科目:高中數(shù)學 來源: 題型:
【題目】過點作已知直線的平行線,交雙曲線于點.
(1)證明:Q是線段MN的中點;
(2)分別過點M、N作雙曲線的切線,證明:三條直線相交于同一點;
(3)設(shè)為直線上一動點,過作雙曲線的切線,切點分別為,證明:點Q在直線AB上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗兩種不同的課堂教學模式對學生的成績是否有影響,現(xiàn)從高二年級的甲(實行的“問題——探究式”)、乙(實行的“自學——指導式”)兩個班中每班任意抽取20名學生進行測試,他們的成績(總分150分)分布莖葉圖如圖所示(以十位百位為莖,個位為葉):
(1)若從參與測試的學生試卷中挑選2份卷面分數(shù)為90~100分的試著進行卷面分析,求抽取的2份試卷恰好每班1份的概率?
(2)記成績在120分以上(包括120分)為優(yōu)秀,其他的成績?yōu)橐话,請完成下?/span>列聯(lián)表,并分析是否有足夠的把握(90%以上)認為這兩種課堂教學模式對學生的成績有影響?
成績 班級 | 優(yōu)秀人數(shù) | 一般人數(shù) | 總計 |
甲班 | |||
乙班 | |||
總計 |
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移個單位,得到函數(shù)的圖像。
(1)當時,若方程恰好有兩個不同的根,求的取值范圍及的值;
(2)令,若對任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】里氏震級M的計算公式為:M=lgA﹣lgA0,其中A是測震儀記錄的地震曲線的最大振幅,是相應(yīng)的標準地震的振幅,假設(shè)在一次地震中,測震儀記錄的最大振幅是1000,此時標準地震的振幅A0為0.001,則此次地震的震級為 級;9級地震的最大的振幅是5級地震最大振幅的 倍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網(wǎng)站2018年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促銷費用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
產(chǎn)品銷量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根據(jù)數(shù)據(jù)繪制的散點圖能夠看出可用線性回歸模型與的關(guān)系,請用相關(guān)系數(shù)加以說明(系數(shù)精確到0.001);
(2)建立關(guān)于的線性回歸方程(系數(shù)精確到0.001);如果該公司計劃在9月份實現(xiàn)產(chǎn)品銷量超6萬件,預測至少需要投入費用多少萬元(結(jié)果精確到0.01).
參考數(shù)據(jù):,,,,,其中,分別為第個月的促銷費用和產(chǎn)品銷量,.
參考公式:(1)樣本相關(guān)系數(shù);
(2)對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列各項均為正數(shù),Sn是數(shù)列的前n項的和,對任意的,都有.數(shù)列各項都是正整數(shù),,且數(shù)列是等比數(shù)列.
(1) 證明:數(shù)列是等差數(shù)列;
(2) 求數(shù)列的通項公式;
(3)求滿足的最小正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意的,都有成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com