13.求經(jīng)過P(0,0)、Q(0,1)、R(2,0)三點(diǎn)的圓的方程.

分析 由題意,經(jīng)過P(0,0)、Q(0,1)、R(2,0)三點(diǎn)的圓,是以Q(0,1)、R(2,0)連線為直徑的圓,求出圓心與半徑,即可求出圓的方程.

解答 解:由題意,經(jīng)過P(0,0)、Q(0,1)、R(2,0)三點(diǎn)的圓,是以Q(0,1)、R(2,0)連線為直徑的圓,
所以圓心坐標(biāo)為(1,$\frac{1}{2}$),半徑為$\frac{\sqrt{5}}{2}$,
所以圓的方程為(x-1)2+(y-$\frac{1}{2}$)2=$\frac{5}{4}$.

點(diǎn)評(píng) 本題考查圓的方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在棱長為1的正方體骨架內(nèi)放一球,使該球與各棱都相切,則該球的體積為$\frac{8\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線方程2x+3+1=0化成斜截式為y=-$\frac{2}{3}$x-$\frac{1}{3}$;化成截距式為$\frac{x}{-\frac{1}{2}}$+$\frac{y}{-\frac{1}{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知β∈[0,π],且滿足$\sqrt{3}sinβ+cosβ$=0,則角β的值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.y=tan(ωx+φ)的最小正周期為$\frac{π}{|ω|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的取值范圍:
(1)y=x2-4x+3(4≤x≤9);
(2)y=x2-6x+2(-1≤x≤4);
(3)y=-x2-8x+9(-6≤x≤0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長、短軸長、焦距成等差數(shù)列,則橢圓的離心率是( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=1+logax,(a>0,a≠1),若y=f-1(x)過點(diǎn)(3,4),則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,x≤0\\{log_2}x{,^{\;}}^{\;}x>0\end{array}\right.$,則$f(f(\frac{1}{2}))$=( 。
A.0B.$-\frac{1}{2}$C.1D.$-\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案