【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大。
(2)求sinB+sinC的最大值.
【答案】
(1)解:設(shè)
則a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程兩邊同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2﹣2bccosA
故cosA=﹣ ,A=120°
(2)解:由(1)得:sinB+sinC
=sinB+sin(60°﹣B)
= cosB+ sinB
=sin(60°+B)
故當(dāng)B=30°時(shí),sinB+sinC取得最大值1
【解析】(1)根據(jù)正弦定理,設(shè) ,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc,再與余弦定理聯(lián)立方程,可求出cosA的值,進(jìn)而求出A的值.(2)根據(jù)(1)中A的值,可知c=60°﹣B,化簡(jiǎn)得sin(60°+B)根據(jù)三角函數(shù)的性質(zhì),得出最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個(gè)長度單位
B.向右平移 個(gè)長度單位
C.向左平移 個(gè)長度單位
D.向左平移 個(gè)長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=(1﹣x2)(x2+ax+b)的圖象關(guān)于直線x=﹣2對(duì)稱,則f(x)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是( )
A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)棱長為a的正方體嵌入到四個(gè)半徑為1且兩兩相切的實(shí)心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動(dòng),則a的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;
(2)求直線與曲線的交點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,2,3,4這4個(gè)數(shù)中,不放回地任意取兩個(gè)數(shù),兩個(gè)數(shù)都是奇數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有體育特長生25人,美術(shù)特長生35人,音樂特長生40人.用分層抽樣的方法從中抽取40人,則抽取的體育特長生、美術(shù)特長生、音樂特長生的人數(shù)分別為( )
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com