分析 由解析式求出函數(shù)的周期與最值,做出輔助線過p作PM⊥x軸于M,根據(jù)周期的大小看出直角三角形中直角邊的長度,解出∠APM與∠BPM的正弦、余弦函數(shù)值,利用cos∠APB=-$\frac{\sqrt{5}}{5}$,求出ω的值.
解答 解:如圖,函數(shù)y=sin(ωx+φ),
∴AB=T=$\frac{2π}{ω}$,最大值為1,
過P作PM⊥x軸于M,則AM是四分之一個周期,有AM=$\frac{π}{2ω}$,MB=$\frac{3π}{2ω}$,MP=1,
∴AP=$\sqrt{1+\frac{{π}^{2}}{4{ω}^{2}}}$,BP=$\sqrt{1+\frac{9{π}^{2}}{4{ω}^{2}}}$,
在直角三角形AMP中,有cos∠APM=$\frac{MP}{AP}$,sin∠APM=$\frac{AM}{AP}$,
在直角三角形BMP中cos∠BPM=$\frac{MP}{BP}$,sin∠BPM=$\frac{BM}{BP}$.
cos∠APB=cos(∠APM+∠BPM)=$\frac{MP}{AP}$•$\frac{MP}{BP}$-$\frac{AM}{AP}•\frac{BM}{BP}$=-$\frac{\sqrt{5}}{5}$.
∴$\frac{1}{\sqrt{1+\frac{{π}^{2}}{4{ω}^{2}}}•\sqrt{1+\frac{9{π}^{2}}{4{ω}^{2}}}}$$\frac{\frac{π}{2ω}•\frac{3π}{2ω}}{\sqrt{1+\frac{{π}^{2}}{4{ω}^{2}}}•\sqrt{1+\frac{9{π}^{2}}{4{ω}^{2}}}}$=-$\frac{\sqrt{5}}{5}$,
化簡得:64ω4-160π2ω2+36π4=0,解得ω=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點評 本題考查三角函數(shù)的圖象的應用與兩角和的余弦函數(shù)公式的應用,本題解題的關鍵是看出函數(shù)的周期,把要求正弦的角放到直角三角形中,利用三角函數(shù)的定義得到結果,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8或9 | B. | 9或10 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 6 | 5 | 10 | 12 |
y | 6 | 5 | 3 | 2 |
A. | $\widehaty$=0.7x-2.3 | B. | $\widehaty$=-0.7x+10.3 | C. | $\widehaty$=-10.3x+0.7 | D. | $\widehaty$=10.3x-0.7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com