【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

工人數(shù)(人)

19

1

28

3

29

3

30

5

31

4

32

3

40

1

合計

20


(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.

【答案】
(1)解:這這20名工人年齡的眾數(shù)為30,極差為40﹣19=21
(2)解:莖葉圖如下:


(3)解:年齡的平均數(shù)為: =30.

這20名工人年齡的方差為S2= [(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6


【解析】(1)根據(jù)眾數(shù)和極差的定義,即可得出;(2)根據(jù)畫莖葉圖的步驟,畫圖即可;(3)利用方差的計算公式,代入數(shù)據(jù),計算即可.
【考點精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少,以及對平均數(shù)、中位數(shù)、眾數(shù)的理解,了解⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1﹣DC﹣C1的大小為60°,則AD的長為(

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1 , x2 , x3 , x4 , x5 , h(x)=lg|x﹣4|,則h(x1+x2+x3+x4+x5)等于(
A.3
B.lg12
C.lg20
D.4lg2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

(1)令,求的單調(diào)區(qū)間;

(2)已知處取得極大值.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處有極值.

)求實數(shù)的值;

)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①y= 是奇函數(shù);
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)f(x)=2xx2在R上有3個零點;
④函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù) 的圖象.
其中正確命題的序號是 . (把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A. 的圖像是一條直線

B. 冪函數(shù)的圖像都經(jīng)過點

C. 若冪函數(shù)是奇函數(shù),則是增函數(shù)

D. 冪函數(shù)的圖像不可能出現(xiàn)在第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)

(1)當(dāng)時,解關(guān)于的不等式: ;

(2)若,已知函數(shù)有兩個零點,若點, ,其中是坐標(biāo)原點,證明: 不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若存在,且,使得,求證: .

查看答案和解析>>

同步練習(xí)冊答案