給出下列命題:
(1)函數(shù)y=sinx+
3
cosx的圖象可由y=sinx的圖象平移得到;
(2) 已知非零向量
a
b
,則向量
a
在向量
b
的方向上的投影可以是
a
b
|
b
|
;
(3)在空間中,若角α的兩邊分別與角β的兩邊平行,則α=β;
(4)從總體中通過科學抽樣得到樣本數(shù)據(jù)x1、x2、x3…xn(n≥2,n∈N+),則數(shù)值S=
(x1-
.
x)2+(x2-
.
x)2+…+(xn-
.
x)2
n-1
.
x
為樣本平均值)可作為總體標準差的點估計值.則上述命題正確的序號是[答](  )
A、(1)、(2)、(4)
B、(4)
C、(2)、(3)
D、(2)、(4)
分析:對于:(1)化簡函數(shù)y=sinx+
3
cosx,即可判斷可由y=sinx的圖象平移得到是不正確的;
(2) 利用向量的數(shù)量積判斷(2)的正誤;
(3)在空間中,若角α的兩邊分別與角β的兩邊平行,則α=β;找出反例即可.
(4)從總體中通過科學抽樣得到樣本數(shù)據(jù),即可作為總體標準差的點估計值,判斷正誤.
解答:解:(1)函數(shù)y=sinx+
3
cosx=2sin(x
π
3
)的圖象,不可能由y=sinx的圖象平移得到;所以不正確;
(2) 已知非零向量
a
、
b
,則向量
a
在向量
b
的方向上的投影可以是
a
b
|
b
|
;符合向量的數(shù)量積的定義,正確;
(3)在空間中,若角α的兩邊分別與角β的兩邊平行,則α=β;可能有α=π-β,所以不正確.
(4)從總體中通過科學抽樣得到樣本數(shù)據(jù)x1、x2、x3…xn(n≥2,n∈N+),則數(shù)值S=
(x1-
.
x)2+(x2-
.
x)2+…+(xn-
.
x)2
n-1
.
x
為樣本平均值)可作為總體標準差的點估計值,滿足從總體中通過科學抽樣得到樣本數(shù)據(jù),作為總體標準差的點估計值的依據(jù).
故選D.
點評:本題是基礎(chǔ)題,考查三角函數(shù)、向量的數(shù)量積、方差與標準差、空間幾何體的有關(guān)知識,基本知識的考查,送分題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)已知可導函數(shù)f(x),x∈D,則函數(shù)f(x)在點x0處取得極值的充分不必要條件是f′(x0)=0,x0∈D.
(2)已知命題P:?x∈R,sinx≤1,則¬p:?x∈R,sinx>1.
(3)已知命題p:
1
x 2-3x+2
>0
,則¬p:
1
x 2-3x+2
≤0

(4)給定兩個命題P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根.如果P∧Q為假命題,P∨Q為真命題,則實數(shù)a的取值范圍是(-∞,0)∪(
1
4
,4)

其中所有真命題的編號是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•萬州區(qū)一模)已知函數(shù)f(x)=|x2-2ax+b|(x∈R),給出下列命題:
(1)f(x)不可能是偶函數(shù);
(2)當f(0)=f(2)時,f(x)的圖象必關(guān)于直線x=1對稱;
(3)若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);
(4)f(x)有最小值b-a2
其中正確的命題的序號是
(3)
(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:①y=1是冪函數(shù);②函數(shù)y=|x+2|-2x在R上有3個零點;③
x-1
(x-2)≥0
的解集為[2,+∞);④當n≤0時,冪函數(shù)y=xn的圖象與兩坐標軸不相交;其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班級有男生20人,女生30人,從中抽取10個人的樣本,恰好抽到了4個男生、6個女生.給出下列命題:
(1)該抽樣可能是簡單的隨機抽樣;
(2)該抽樣一定不是系統(tǒng)抽樣;
(3)該抽樣女生被抽到的概率大于男生被抽到的概率.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a1,a2,a3,a4是等差數(shù)列,且滿足1<a1<3,a3=4,若bn=2an,給出下列命題:(1)b1,b2,b3,b4是一個等比數(shù)列; (2)b1<b2; (3)b2>4; (4)b4>32; (5)b2b4=256.其中真命題的個數(shù)是(  )

查看答案和解析>>

同步練習冊答案