【題目】我國古代數(shù)學家劉徽在其《海島算經》中給出了著名的望海島問題及二次測望方法:今有望海島,立兩表,齊高三丈,前后相去千步,令后表與前表三相直.從前表卻行一百二十三步,人目著地取望島峰,與表末三合.從后表卻行一百二十七步,人目著地取望島峰,亦與表末三合.問島高及去表各幾何?這一方法領先印度500多年,領先歐洲1300多年.其大意為:測量望海島PQ的高度及海島離岸距離,在海岸邊立兩根等高的標桿共面,均垂直于地面),使目測點EP、B共線,目測點FP、D共線,測出AE、CF、AC即可求出島高和距離(如圖).,則______________.

【答案】

【解析】

,,由正弦定理得,在根據(jù)、化簡即可得解.

,則,

中,,得,

,

.

故答案為:、.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角AB,C的對邊,且(2bccosAacosC

1)求A;

2)若△ABC的面積為,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將正整數(shù)對作如下分組

則第100個數(shù)對為________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個矩形,圓弧所在圓的圓心為O,經測量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧.,矩形的面積為S.

1)求矩形的面積S關于變量的函數(shù)關系式;

2)求為何值時,矩形的面積S最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a11,且當n2時,

1)若1,證明數(shù)列{a2n1}是等差數(shù)列;

2)若2.①設,求數(shù)列{bn}的通項公式;②設,證明:對于任意的p,m N *,當p m,都有 Cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為ABBC的中點,點F在側棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某果園種植“糖心蘋果”已有十余年,為了提高利潤,該果園每年投入一定的資金,對種植采摘包裝宣傳等環(huán)節(jié)進行改進.如圖是2009年至2018年,該果園每年的投資金額(單位:萬元)與年利潤增量(單位:萬元)的散點圖:

該果園為了預測2019年投資金額為20萬元時的年利潤增量,建立了關于的兩個回歸模型;

模型①:由最小二乘公式可求得的線性回歸方程:;

模型②:由圖中樣本點的分布,可以認為樣本點集中在曲線:的附近,對投資金額做交換,令,則,且有,,,.

(1)根據(jù)所給的統(tǒng)計量,求模型②中關于的回歸方程;

(2)分別利用這兩個回歸模型,預測投資金額為20萬元時的年利潤增量(結果保留兩位小數(shù));

(3)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關指數(shù),并說明誰的預測值精度更高更可靠.

回歸模型

模型①

模型②

回歸方程

102.28

36.19

附:樣本的最小乘估計公式為,;

相關指數(shù).

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中將底面為直角三角形且側棱垂直與底面的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,

1)證明:直線平面;

2)已知,且三棱錐A-A1B1D1的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示,中的最大值,.已知函數(shù),

(1)設求函數(shù)上零點的個數(shù);

(2)試探討是否存在實數(shù),使得恒成立?若存在,的取值范圍若不存在,說明理由

查看答案和解析>>

同步練習冊答案