(08年黃岡中學(xué)三模理)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過點(diǎn)開口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若直線與函數(shù)有三個(gè)交點(diǎn),

求實(shí)數(shù)的取值范圍.

 

 

解析:(Ⅰ),且的圖像經(jīng)過點(diǎn),

,            ∴,

由導(dǎo)函數(shù)圖像可知函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

上單調(diào)遞增, 

,解得 . ∴.         

(Ⅱ)令,則直線與函數(shù)有三個(gè)交點(diǎn)等價(jià)于函數(shù)的圖象與軸有三個(gè)交點(diǎn),即函數(shù)的極大、極小值異號(hào). ,∴當(dāng)k>時(shí),有兩個(gè)根.

當(dāng)時(shí),g(x)為增函數(shù),當(dāng)時(shí),g(x)為減函數(shù),故g(x)分別取得極大值、極小值,由 , 即,也即>64,∴k>9.

k的取值范圍是 (可數(shù)型結(jié)合求解)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)三模)如圖,在直三棱柱ABCA1B1C1中, .

(Ⅰ)若DAA1中點(diǎn),求證:平面B1CD平面B1C1D;

(Ⅱ)若二面角B1DCC1的大小為60°,求AD的長.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)三模理)如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),與拋物線交于,如果

以線段為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說明理由;

(Ⅲ)是否存在實(shí)數(shù),使得△的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)三模)設(shè)數(shù)列{an},{bn}滿足,且.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)對(duì)一切,證明成立;

(Ⅲ)記數(shù)列的前n項(xiàng)和分別為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)三模文)(本小題滿分13分)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過點(diǎn)開口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若,且過點(diǎn)(1,m)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案