如圖:△ABC中,D是AB上一點(diǎn),且AB=3AD,∠B=75°,∠CDB=60°,求證:△ABC∽△CBD.
考點(diǎn):相似三角形的判定
專題:解三角形
分析:設(shè)AB等于c,在△BCD中,利用正弦定理求出BC=
6
3
c
,從而得到
AB
BC
=
BC
BD
,由此能證明△ABC∽△CBD.
解答: 解:設(shè)AB等于c,∵AB=3AD,∴BD=
2
3
c
,
在△BCD中,
∵∠B=75°,∠CDB=60°,∴∠BCD=45°,
BC
sin60°
=
BD
sin45°
,
∴BC=
BD•sin60°
sin45°
=
2
3
c•
3
2
2
2
=
6
3
c

AB
BC
=
c
6
3
c
=
6
2
,
BC
BD
=
6
3
c
2
3
c
=
6
2
,
AB
BC
=
BC
BD
,又∵∠B=∠B,
∴△ABC∽△CBD.
點(diǎn)評(píng):本題考查三角形相似的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x,y的方程x2•sinα-y2•cosα=1所表示的焦點(diǎn)在x軸的雙曲線,則方程(x+cosα)2+(y+sinα)2=1所表示的圓的圓心在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:
3
(1+
1
3
)>
5
5
(1+
1
5
)>
7
,
7
(1+
1
7
)>
9
,
9
(1+
1
9
)>
11
 …
請(qǐng)你根據(jù)上述特點(diǎn),提煉出一個(gè)一般性命題,并用分析法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=b且an=2an-1+
1
2n
(n>1,n∈N*
(Ⅰ)若b=-
1
8
,求a2,a3,a4
(Ⅱ)若{an}是遞增數(shù)列,求實(shí)數(shù)b的取值范圍;
(Ⅲ)若?n∈N*,Sn≥S2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以原點(diǎn)為中心,F(xiàn)(
3
,0)為右焦點(diǎn)的橢圓C,過點(diǎn)F垂直于x軸的弦AB長(zhǎng)為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)M、N為橢圓C上的兩動(dòng)點(diǎn),且
OM
ON
,點(diǎn)P為橢圓C的右準(zhǔn)線與x軸的交點(diǎn),求
PM
PN
取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3
(1)若
a
,
b
兩向量所成角θ=
3
,求
a
b

(2)若
a
,
b
兩向量所成的角θ=
π
3
,求|
a
+2
b
|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面是菱形的四棱錐S-ABCD中,SA=SC=2a,SB=SD=
2
a,E是SC上的一點(diǎn)且SE=λa(0<λ≤a),求證:對(duì)任意λ∈(0,a],都有BD⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)a∈R,解關(guān)于x的不等式ax2-(2a+1)x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱柱的直觀圖(圖2)和三視圖(圖1)(主視圖和俯視圖是正方形,左視圖是等腰直角三角形)如圖所示2,其中M、N分別是AB、AC的中點(diǎn),G是DF上的一動(dòng)點(diǎn).

(1)求證:GN⊥AC
(2)當(dāng)FG=GD時(shí),證明AG∥平面FMC.

查看答案和解析>>

同步練習(xí)冊(cè)答案