【題目】某品牌電視生產(chǎn)廠家有AB兩種型號的電視機(jī)參加了家電下鄉(xiāng)活動(dòng),若廠家對A,B兩種型號的電視機(jī)的投放金額分別為pq萬元,農(nóng)民購買電視機(jī)獲得的補(bǔ)貼分別為p, ln q萬元,已知A,B兩種型號的電視機(jī)的投放總額為10萬元,且AB兩種型號的電視機(jī)的投放金額均不低于1萬元,請你制定一個(gè)投放方案,使得在這次活動(dòng)中農(nóng)民得到的補(bǔ)貼最多,并求出最大值.(精確到0.1,參考數(shù)據(jù):ln 41.4)

【答案】廠家對A,B兩種型號的電視機(jī)的投放金額分別為6萬元和4萬元時(shí),農(nóng)民得到的補(bǔ)貼最多,最多補(bǔ)貼約1.2萬元.

【解析】這是利用導(dǎo)數(shù)研究優(yōu)化問題的典例題目,先求出補(bǔ)貼yB型號電視機(jī)的投放金額x萬元之間的函數(shù)關(guān)系式.然后利用導(dǎo)數(shù)求最值即可.注意應(yīng)用題一般都是單峰函數(shù),導(dǎo)數(shù)等于零的點(diǎn)一般就是要求取最大值時(shí)x的值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級從甲、乙兩個(gè)班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是83,則x+y的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:不等式(m1)x2(m1)x2>0的解集是R,命題qsin xcos x>m.如果對于任意的xR,命題p是真命題且命題q為假命題,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的頂點(diǎn)分別在兩兩垂直的三條射線上,在下列命題中,錯(cuò)誤的是(

A. 四面體是正三棱錐 B. 直線與平面相交 C. 異面直線所成角是 D. 直線與平面所成的角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,B=
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),a= ,求f(A)的最大值及此時(shí)△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2013·湖北高考)四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:

yx負(fù)相關(guān)且=2.347x-6.423;

yx負(fù)相關(guān)且=-3.476x+5.648;

yx正相關(guān)且=5.437x+8.493;

yx正相關(guān)且=-4.326x-4.578.

其中一定不正確的結(jié)論的序號是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞市某高級中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限 (單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬元)廠家提供的統(tǒng)計(jì)資料如下:

使用年限 ()

1

2

3

4

5

維護(hù)費(fèi)用(萬元)

6

7

7.5

8

9

請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線性回歸方程;

若規(guī)定當(dāng)維護(hù)費(fèi)用超過13.1萬元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.

參考公式:最小二乘估計(jì)線性回歸方程中系數(shù)計(jì)算公式:

, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,平面平面, , , 分別為, , 的中點(diǎn), , .

(1)求證: 平面;

(2)若上任一點(diǎn),證明平面.

查看答案和解析>>

同步練習(xí)冊答案