19.已知函數(shù)f(x)=$\frac{x}{{x}^{2}+m}$(m≠0),則下列結(jié)論正確的是①④
①函數(shù)f(x)是奇函數(shù),且過點(diǎn)(0,0);
②函數(shù)f(x)的極值點(diǎn)是x=±$\sqrt{m}$;
③當(dāng)m<0時(shí),函數(shù)f(x)是單調(diào)遞減函數(shù),值域是R;
④當(dāng)m>0時(shí),函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可以是0個(gè),1個(gè),2個(gè).

分析 利用函數(shù)的解析式對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①∵f(-x)=-$\frac{x}{{x}^{2}+m}$=-f(x),∴函數(shù)f(x)是奇函數(shù),
∵f(0)=0,∴函數(shù)f(x)過點(diǎn)(0,0),故正確;
②m>0,函數(shù)f(x)的極值點(diǎn)是x=±$\sqrt{m}$;,故不正確
③當(dāng)m<0時(shí),x=0,f(0)=0,x≠0,f(x)=$\frac{1}{x+\frac{m}{x}}$,函數(shù)f(x)在(-∞,0),(0,+∞)單調(diào)遞減函數(shù),故不正確;
④當(dāng)m>0時(shí),x=0,f(0)=0,x≠0,f(x)=$\frac{1}{x+\frac{m}{x}}$,大致圖象如圖所示

所以函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可以是0個(gè),1個(gè),2個(gè).正確.
故答案為:①④.

點(diǎn)評(píng) 本題考查函數(shù)的解析式與性質(zhì),考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=x3+3x2+a有且僅有兩個(gè)零點(diǎn)x1和x2(x1<x2),則x2-x1的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)部分圖象如圖所示,點(diǎn)P為f(x)與x軸的交點(diǎn),點(diǎn)A,B分別為f(x)圖象的最低點(diǎn)與最高點(diǎn),$\overrightarrow{PA}$•$\overrightarrow{PB}$=|$\overrightarrow{PA}$|2
(Ⅰ)求ω的值;
(Ⅱ)若x∈[-1,1],求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)(2-x)5=a0+a1x+a2x2+…a5x5,那么(a1+a3+a52-(a0+a2+a42的值為(  )
A.32B.-32C.243D.-243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=1+$\frac{1}{{x}^{2}+1}$在區(qū)間[3,+∞)上( 。
A.有最小值無最大值B.有最大值無最小值
C.既有最大值又有最小值D.既無最大值又無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,設(shè)O為平行四邊形ABCD所在平面外任意一點(diǎn),E為OC的中點(diǎn),若$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{OD}$+x$\overrightarrow{OB}$+y$\overrightarrow{OA}$,則x+y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn).若過直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為( 。
A.4B.$2\sqrt{3}$C.$2\sqrt{6}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=|log3(x+1)|,實(shí)數(shù)m,n滿足-1<m<n,且f(m)=f(n).若f(x)在[m2,n]上的最大值為2,則$\frac{n}{m}$=( 。
A.-6B.-8C.-9D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,邊長(zhǎng)為$\sqrt{2}$的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,CD=BC=$\frac{1}{2}$AB=1,AE∩DF=O,M為EC的中點(diǎn).
(Ⅰ)證明:OM∥平面ABCD;
(Ⅱ)求二面角D-AB-E的正切值;
(Ⅲ)求BF與平面ADEF所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案