A. | 3 | B. | $\frac{7}{2}$ | C. | 2$\sqrt{3}$ | D. | $\frac{9}{2}$ |
分析 連結AC、BD,交于點E,則E是AC中點,取PC中點O,連結OE,推導出O是該四棱錐的外接的球心,可得球半徑,由四棱錐的所有頂點都在體積為$\frac{243π}{16}$,建立方程求出PA即可.
解答 解:連結AC,BD交于點E,取PC的中點O,連結OE,則OE∥PA,所以OE⊥底面ABCD,則O到四棱錐的所有頂點的距離相等,即O球心,均為$\frac{1}{2}PC=\frac{1}{2}\sqrt{P{A^2}+A{C^2}}=\frac{1}{2}\sqrt{P{A^2}+8}$,
所以由球的體積可得$\frac{4}{3}π{(\frac{1}{2}\sqrt{P{A^2}+8})^3}=\frac{243π}{16}$,解得$PA=\frac{7}{2}$,
故選:B.
點評 本題考查四面體的外接球的體積,考查勾股定理的運用,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{1}{3}$ln2,+∞) | B. | [0,$\frac{1}{3}$ln2] | C. | (-∞,0] | D. | (-∞,$\frac{1}{3}$ln2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {0} | B. | {1} | C. | {1,2,} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{8}{27}$ | B. | $\frac{1}{3}$ | C. | $\frac{10}{27}$ | D. | $\frac{11}{27}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com