【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為 .
【答案】﹣37
【解析】解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,
因此當(dāng)x∈[2,+∞),(﹣∞,0]時f(x)為增函數(shù),在x∈[0,2]時f(x)為減函數(shù),
又因為x∈[﹣2,2],
所以得
當(dāng)x∈[﹣2,0]時f(x)為增函數(shù),在x∈[0,2]時f(x)為減函數(shù),
所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3
所以f(﹣2)=﹣37,f(2)=﹣5
因為f(﹣2)=﹣37<f(2)=﹣5,所以函數(shù)f(x)的最小值為f(﹣2)=﹣37.
答案為:﹣37
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 平面△為等邊三角形, 是上的點,且.
(1)求和平面所成角的正弦值;
(2)線段上是否存在點,使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從點A(-3,4)射出,到x軸上的點B后,被x軸反射到y(tǒng)軸上的點C,又被y軸反射,這時反射光線恰好過點D(-1,6),求光線BC所在直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移 個單位長度后,所得的圖象與原圖象重合,則ω的最小值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x2lnx,g(x)=ax3﹣x2 .
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實數(shù)a的取值范圍;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…為自然對數(shù)的底數(shù))上有解的最小a的值為an , 數(shù)列{an}的前n項和為Sn , 求證:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[1,+∞]上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2015)上零點的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從橢圓上一點向軸作垂線,垂足恰好為橢圓的左焦點, 是橢圓的右頂點, 是橢圓的上頂點,且.
(1)求該橢圓的方程;
(2)不過原點的直線與橢圓交于兩點,已知,直線, 的斜率, 成等比數(shù)列,記以, 為直徑的圓的面積分別為,求證; 為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,把函數(shù) 的圖象向右平移 個單位,得到函數(shù) 的圖象,若 是 在 內(nèi)的兩根,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com