一個六棱柱的底面是正六邊形,其側棱垂直底面.已知該六棱柱的頂點都在同一個球面上,且該六棱柱的高為
3
,底面周長為3,那么這個球的表面積為
 
考點:球的體積和表面積
專題:計算題,空間位置關系與距離
分析:先求正六棱柱的體對角線,就是外接球的直徑,然后求出球的表面積.
解答: 解:∵正六邊形周長為3,得邊長為
1
2
,
∴其主對角線為1,從而球的直徑2R=
(
3
)2+12
=2,
∴R=1,
∴球的表面積為4π.
故答案為:4π.
點評:本題考查球的表面積,解題的關鍵是確定球的直徑,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某商場對A品牌的商品進行了市場調查,預計2012年從1月起前x個月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關系是:P(x)=
1
2
x(x+1)(41-2x)(x≤12且x∈N*
(1)寫出第x月的需求量f(x)的表達式;
(2)若第x月的銷售量g(x)=
f(x)-21x,1≤x<7且x∈N*
x2
ex
(
1
3
x
2
-10x+96),7≤x≤12且x∈N*
(單位:件),每件利潤q(x)元與月份x的近似關系為:q(x)=
10ex
x
,問:該商場銷售A品牌商品,預計第幾月的月利潤達到最大值?月利潤最大值是多少?(e6≈403)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若?a∈(0,+∞),?θ∈R使asinθ≥a成立,則cos(θ-
π
6
)的值為( 。
A、
3
2
B、
1
2
C、±
1
2
D、±
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷函數(shù)f(x)=x0-1的奇偶性:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P:函數(shù)y=cx在R上單調遞減,Q:函數(shù)y=x2+|x|+2c的最小值大于1.如果命題“p∨q”為真命題,且“p∧q”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,cos
x
2
)與
b
=(
3
sin
x
2
+cos
x
2
,y)共線,且有函數(shù)y=f(x).
(Ⅰ)若f(x-
π
6
)=1,x∈(0,2π),求x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對有n(n≥4)個元素的總體{1,2,3,…,n}進行抽樣,先將總體分成兩個子總體{1,2,3,…,m}和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個子總體中各隨機抽取2個元素組成樣本.用Pij表示元素i和j同時出現(xiàn)在樣本中的概率.
(1)求P1n的表達式(用m,n表示);
(2)求所有Pij(1≤i<j≤n)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)
1+Z
1-Z
=i,則Z的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經過點P0(3,-4),求角α的正弦、余弦和正切值.

查看答案和解析>>

同步練習冊答案