【題目】如圖,設(shè)斜率為k(k>0)的直線l與橢圓C: + =1交于A、B兩點(diǎn),且OA⊥OB.

(Ⅰ)求直線l在y軸上的截距(用k表示);
(Ⅱ)求△AOB面積取最大值時(shí)直線l的方程.

【答案】解:(Ⅰ)設(shè)l:y=kx+t,A(x1 , y1),B(x2 , y2), ∵斜率為k(k>0)的直線l與橢圓C: + =1交于A、B兩點(diǎn),且OA⊥OB,
∴∠AOB=90°,∴ ,
∴x1x2+(kx1+t)(kx2+t)=0,∴(1+k2)x1x2+kt(x1+x2)+t2=0,(*)
聯(lián)立 ,消去y,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,
,x1x2= 三,且△>0,代入(*)
從而得(1+k2)(3t2﹣9)﹣6k2t2+t2(1+3k2)=0,∴3t2﹣9﹣9k2+t2=0,
,∴t=± ,
∴直線l在y軸上的截距為 或﹣
(Ⅱ)設(shè)△AOB的面積為S,O到直線l的距離為d,則S= |AB|d,
而由(1)知d= ,且|AB|=
= = = ,

當(dāng) 時(shí), ,解得k= ,∴t=
∴所求直線方程為y= 或y=
【解析】(Ⅰ)設(shè)l:y=kx+t,A(x1 , y1),B(x2 , y2),由OA⊥OB,得(1+k2)x1x2+kt(x1+x2)+t2=0,聯(lián)立 ,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,由此利用韋達(dá)定理、根的判別式,結(jié)合已知條件能求出直線l在y軸上的截距.(Ⅱ)設(shè)△AOB的面積為S,O到直線l的距離為d,則S= |AB|d,由此利用點(diǎn)到直線的距離公式和弦長(zhǎng)公式能求出△AOB面積取最大值時(shí)直線l的方程.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫(xiě)出直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求x+2y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,漸近線方程為y=±x且雙曲線過(guò)點(diǎn)P(4,-).

(1)求雙曲線的方程

(2)若點(diǎn)M(x1,y1)在雙曲線上的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分別是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的左右兩支分別交于兩點(diǎn).若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若ln(x+1)﹣1≤ax+b對(duì)任意x>﹣1的恒成立,則 的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1200編號(hào),并按編號(hào)順序平均分為40組(15號(hào),610號(hào)196200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 .

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為.

(1)證明:直線AB過(guò)定點(diǎn);

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓內(nèi)接四邊形ABCD中,AB=3,AD=2,∠BCD=1200

(1)求線段BD的長(zhǎng)與圓的面積

(2)求四邊形ABCD的周長(zhǎng)的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案