【題目】某大型超市擬對店慶當(dāng)天購物滿元的顧客進(jìn)行回饋獎勵.規(guī)定:顧客轉(zhuǎn)動十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),待轉(zhuǎn)盤停止轉(zhuǎn)動時,若指針指向扇形區(qū)域,則顧客可領(lǐng)取此區(qū)域?qū)?yīng)面額(單位:元)的超市代金券.假設(shè)轉(zhuǎn)盤每次轉(zhuǎn)動的結(jié)果互不影響.

(Ⅰ)若,求顧客轉(zhuǎn)動一次轉(zhuǎn)盤獲得元代金券的概率;

(Ⅱ)某顧客可以連續(xù)轉(zhuǎn)動兩次轉(zhuǎn)盤并獲得相應(yīng)獎勵,當(dāng)時,求該顧客第一次獲得代金券的面額不低于第二次獲得代金券的面額的概率;

記顧客每次轉(zhuǎn)動轉(zhuǎn)盤獲得代金券的面額為,當(dāng)取何值時, 的方差最。

(結(jié)論不要求證明)

【答案】(1) ;(2) ;(3) .

【解析】試題分析:(Ⅰ)利用幾何概型的概率公式進(jìn)行求解;(Ⅱ)利用互斥事件的概率公式和相互獨(dú)立事件同時發(fā)生的概率公式進(jìn)行求解;(Ⅲ)利用方差公式進(jìn)行求解.

試題解析:(Ⅰ)設(shè)事件為“顧客轉(zhuǎn)動一次轉(zhuǎn)盤獲得元代金券”,

由題意知.

(Ⅱ)設(shè)事件顧客第一次獲得代金券面額不低于第二次獲得的代金券面額

設(shè)事件為“該顧客第轉(zhuǎn)動轉(zhuǎn)盤獲得的超市代金券面額為, .

由題意知, .

因此 .

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸端點(diǎn)到右焦點(diǎn)的距離為2.

求橢圓的方程;

過點(diǎn)的直線交橢圓兩點(diǎn),交直線于點(diǎn),若, ,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點(diǎn)間的距離為 ,且圖象上一個最低點(diǎn)為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)y= 的定義域?yàn)椋?/span>
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進(jìn)行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案