【題目】市面上有某品牌型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過5000小時,經(jīng)銷商對型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計,得到如下頻率分布直方圖:
某商家因原店面需要重新裝修,需租賃一家新店面進(jìn)行周轉(zhuǎn),合約期一年.新店面需安裝該品牌節(jié)能燈5支(同種型號)即可正常營業(yè).經(jīng)了解,型20瓦和型55瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝.已知型和型節(jié)能燈每支的價格分別為120元、25元,當(dāng)?shù)厣虡I(yè)電價為0.75元/千瓦時.假定該店面一年周轉(zhuǎn)期的照明時間為3600小時,若正常營業(yè)期間燈壞了立即購買同型燈管更換.(用頻率估計概率)
(Ⅰ)根據(jù)頻率直方圖估算型節(jié)能燈的平均使用壽命;
(Ⅱ)根據(jù)統(tǒng)計知識知,若一支燈管一年內(nèi)需要更換的概率為,那么支燈管估計需要更換支.若該商家新店面全部安裝了型節(jié)能燈,試估計一年內(nèi)需更換的支數(shù);
(Ⅲ)若只考慮燈的成本和消耗電費,你認(rèn)為該商家應(yīng)選擇哪種型號的節(jié)能燈,請說明理由.
【答案】(Ⅰ)3440小時;(Ⅱ)4;(Ⅲ)應(yīng)選擇A型節(jié)能燈.
【解析】
(Ⅰ)由頻率直方圖即可得到平均使用壽命;(Ⅱ)根據(jù)題意即可得到一年內(nèi)需更換的支數(shù);(Ⅲ)分別計算所花費用,即可作出判斷.
(Ⅰ)由圖可知,各組中值依次為,對應(yīng)的頻率依次為,故型節(jié)能燈的平均使用壽命為小時.
(Ⅱ)由圖可知,使用壽命不超過小時的頻率為,將頻率視為概率,每支燈管需要更換的概率為,故估計一年內(nèi)支型節(jié)能燈需更換的支數(shù)為.
(Ⅲ)若選擇型節(jié)能燈,一年共需花費元;
若選擇型節(jié)能燈,一年共需花費元.
因為,所以該商家應(yīng)選擇A型節(jié)能燈.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動圓與圓外切,與圓內(nèi)切.
(1)求動圓圓心的軌跡方程;
(2)直線過點且與動圓圓心的軌跡交于、兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“若,則x,y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若,則有實根”的逆否命題;
④“若,則”的逆命題。
其中真命題是( )
A.①②④B.②③④C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的左焦點作圓的切線交雙曲線的右支于點,且切點為,已知為坐標(biāo)原點,為線段的中點(點在切點的右側(cè)),若的周長為,則雙曲線的漸近線的方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,,E、F、H分別為AP、AB、AC的中點,PF交BE于點M,CF交BH于點N,,.
求證:平面BEH;
求證:;
求直線PA與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, ,,,,是線段的中點.
(1)證明:平面
(2)當(dāng)為何值時,四棱錐的體積最大?并求此最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有____________(把所有正確的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com